<parent>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-parentartifactId>
<version>2.1.5.RELEASEversion>
parent>
<dependencies>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starterartifactId>
dependency>
<dependency>
<groupId>org.springframework.kafkagroupId>
<artifactId>spring-kafkaartifactId>
dependency>
<dependency>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka-streamsartifactId>
<version>2.0.1version>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-testartifactId>
<scope>testscope>
dependency>
dependencies>
spring.kafka.bootstrap-servers=Centos:9092
spring.kafka.producer.retries=5
spring.kafka.producer.acks=all
spring.kafka.producer.batch-size=16384
spring.kafka.producer.buffer-memory=33554432
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.properties.enable.idempotence=true
spring.kafka.producer.transaction-id-prefix=transaction-id-
spring.kafka.consumer.group-id=group1
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.enable-auto-commit=true
spring.kafka.consumer.auto-commit-interval=100
spring.kafka.consumer.properties.isolation.level=read_committed
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
package com.baizhi;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class KafkaApplicationDemo {
public static void main(String[] args) {
SpringApplication.run(KafkaApplicationDemo.class,args);
}
}
package com.baizhi;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.annotation.KafkaListeners;
import org.springframework.stereotype.Component;
@Component
public class KafkaListenerComponent {
@KafkaListeners(value = {@KafkaListener(topicPattern = "topic.*")})
public void reciveRecored(ConsumerRecord<String,String> record){
System.out.println(record.value());
}
}
往topic中写入数据即可以得到 如下所示:
package com.baizhi.jsy.kafkaapi;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.text.DecimalFormat;
import java.util.Properties;
public class ProductKafka {
public static void main(String[] args) {
//创建生产者
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"Centos:9092");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName()); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
//优化参数
properties.put(ProducerConfig.BATCH_SIZE_CONFIG,1024*1024);//生产者尝试缓存记录,为每一个分区缓存一个mb的数据
properties.put(ProducerConfig.LINGER_MS_CONFIG,500);//最多等待0.5秒.
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
for(int i=0;i<10;i++){
DecimalFormat decimalFormat = new DecimalFormat("00");
String format = decimalFormat.format(i);
ProducerRecord<String, String> record = new ProducerRecord<>("topic01", "key" + format, "value" + format);
kafkaProducer.send(record);
}
kafkaProducer.flush();
kafkaProducer.close();
}
}
package com.baizhi;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class KafkaApplicationDemo {
public static void main(String[] args) {
SpringApplication.run(KafkaApplicationDemo.class,args);
}
}
从topic01读取数据,然后调用写好的业务方法 将读取的数据作为参数传送给业务成方法
package com.baizhi;
import com.baizhi.service.IOrderService;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.annotation.KafkaListeners;
import org.springframework.stereotype.Component;
@Component
public class KafkaListenerComponent {
@Autowired
IOrderService iOrderService;
@KafkaListeners(value = {@KafkaListener(topicPattern = "topic01")})
public void reciveRecored(ConsumerRecord<String,String> record){
//System.out.println(record.value());
iOrderService.saveOrder(record.key(),record.value()+"JiangSi Yu");
}
}
参数是topic的键和值
package com.baizhi.service;
public interface IOrderService {
public void saveOrder(String id,Object message);
}
是将数据写入topic03的类 topic01数据作为参数传过来的
package com.baizhi.service.impl;
import com.baizhi.service.IOrderService;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
@Service
@Transactional
public class OrderService implements IOrderService {
@Autowired
private KafkaTemplate kafkaTemplate;
@Override
public void saveOrder(String id, Object message) {
//做一些业务的处理 发送出去
kafkaTemplate.send(new ProducerRecord("topic03",id,message));
}
}
package com.baizhi.jsy.transaction;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.errors.ProducerFencedException;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.UUID;
public class ProductKafkaTransactionnOnly {
public static void main(String[] args) {
//创建生产者
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "Centos:9092");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
//优化参数
properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 1024 * 1024);//生产者尝试缓存记录,为每一个分区缓存一个mb的数据
properties.put(ProducerConfig.LINGER_MS_CONFIG, 500);//最多等待0.5秒.
//开启幂等性 acks必须是-1
properties.put(ProducerConfig.ACKS_CONFIG,"-1");
//允许超时最大时间
properties.put(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG,5000);
//失败尝试次数
properties.put(ProducerConfig.RETRIES_CONFIG,3);
//开幂等性 精准一次写入
properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG,true);
//开启事务
properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,"transaction-id"+ UUID.randomUUID());
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
//初始化事务
kafkaProducer.initTransactions();
try {
//开启事务
kafkaProducer.beginTransaction();
for (int i=0;i<5;i++){
ProducerRecord<String, String> record = new ProducerRecord<>(
"topic01",
"Transaction",
"Test springboot 发送数据");
kafkaProducer.send(record);
kafkaProducer.flush();
if (i==3){
//Integer b=i/0;//写错
}
}
//事务提交
kafkaProducer.commitTransaction();
} catch (ProducerFencedException e) {
//终止事务
kafkaProducer.abortTransaction();
e.printStackTrace();
}
kafkaProducer.close();
}
}
适用于不想对数据进行额外处理的业务场景 直接将数据发送给某个队列
package com.baizhi;
import com.baizhi.service.IOrderService;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.annotation.KafkaListeners;
import org.springframework.messaging.handler.annotation.SendTo;
import org.springframework.stereotype.Component;
@Component
public class KafkaListenerComponent {
@Autowired
IOrderService iOrderService;
@KafkaListeners(value = {@KafkaListener(topicPattern = "topic01")})
public void reciveRecored(ConsumerRecord<String,String> record){
//System.out.println(record.value());
iOrderService.saveOrder(record.key(),record.value()+"JiangSi Yu");
}
@KafkaListeners(value = {@KafkaListener(topicPattern = "topic02")})
@SendTo("topic03")
public String reciveRecored002(ConsumerRecord<String,String> record){
return record.key()+"\tfrom topic02 to topic03\t"+record.value();
}
}
package com.baizhi.jsy.transaction;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.errors.ProducerFencedException;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.UUID;
public class ProductKafkaTransactionnOnly {
public static void main(String[] args) {
//创建生产者
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "Centos:9092");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
//优化参数
properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 1024 * 1024);//生产者尝试缓存记录,为每一个分区缓存一个mb的数据
properties.put(ProducerConfig.LINGER_MS_CONFIG, 500);//最多等待0.5秒.
//开启幂等性 acks必须是-1
properties.put(ProducerConfig.ACKS_CONFIG,"-1");
//允许超时最大时间
properties.put(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG,5000);
//失败尝试次数
properties.put(ProducerConfig.RETRIES_CONFIG,3);
//开幂等性 精准一次写入
properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG,true);
//开启事务
properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,"transaction-id"+ UUID.randomUUID());
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
//初始化事务
kafkaProducer.initTransactions();
try {
//开启事务
kafkaProducer.beginTransaction();
for (int i=0;i<5;i++){
ProducerRecord<String, String> record = new ProducerRecord<>(
"topic02",
"Transaction",
"Test springboot 发送数据");
kafkaProducer.send(record);
kafkaProducer.flush();
if (i==3){
//Integer b=i/0;//写错
}
}
//事务提交
kafkaProducer.commitTransaction();
} catch (ProducerFencedException e) {
//终止事务
kafkaProducer.abortTransaction();
e.printStackTrace();
}
kafkaProducer.close();
}
}