使用python cv 图片处理

对图片处理,亮度、翻转、水印、噪声、图中图

# coding: utf-8

import cv2
import numpy as np
import random
import os
import logging
import time

# from concurrent.futures import ThreadPoolExecutor, as_completed

logging.basicConfig(
    filename='conver_image.log',
    format='[%(asctime)s][%(threadName)s:%(thread)d][%(filename)s:%(lineno)d]' \
           '[%(levelname)s]: %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S',
    level=logging.INFO
)

slog = logging.getLogger("conver_image")

save_path = "./ty_images"
debug = False


def save_image(img, path, name):
    try:
        if not os.path.exists(path):
            os.makedirs(path)
    except Exception as e:
        slog.error("save_image\t{}\t{}\t{}".format(path, name, e))

    cv2.imwrite(os.path.join(path, name), img)
    # cv2.imwrite("./tr/{}".format() , img)


def contrast_brightness(img, c, b):
    # 亮度就是每个像素所有通道都加上b
    blank = np.zeros(img.shape, img.dtype)  # np.zeros(img.shape, dtype=uint8)
    # cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]])
    # dst = src1 * alpha + src2 * beta + gamma;
    dst = cv2.addWeighted(img, c, blank, 1 - c, b)

    return dst


def mark_image(img, x1, y1, x2, y2, dis):
    new_image = img[x1:x2, y1:y2]
    new_image_mark = new_image[::dis, ::dis]

    dst = img.copy()
    nx, ny = new_image_mark.shape[:2]
    for i in range(nx):
        for j in range(ny):
            dst[x1 + i * dis:x1 + (i + 1) * dis, y1 + j * dis:y1 + (j + 1) * dis] = new_image_mark[i, j]

    return dst


def add_watermark(img, logo_mark, c):
    logo_w, logo_h = logo_mark.shape[:2]

    new_logo = ""
    if logo_w >= img.shape[0] or logo_h >= img.shape[1]:
        fx = min(img.shape[0] * 0.9 / logo_w, img.shape[1] * 0.9 / logo_h)
        new_logo = cv2.resize(logo_mark, (0, 0), fx=fx, fy=fx, interpolation=cv2.INTER_AREA)
        logo_w, logo_h = new_logo.shape[:2]

    dst = img.copy()

    left = random.randint(0, img.shape[0] - logo_w - 1)
    top = random.randint(0, img.shape[1] - logo_h - 1)

    # cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]])
    # dst = src1 * alpha + src2 * beta + gamma;
    if new_logo != "":
        dst[left:left + logo_w, top:top + logo_h] = cv2.addWeighted(
            img[left:left + logo_w, top:top + logo_h], c, new_logo, 1 - c, 0
        )
    else:
        dst[left:left + logo_w, top:top + logo_h] = cv2.addWeighted(
            img[left:left + logo_w, top:top + logo_h], c, logo_mark, 1 - c, 0
        )

    return dst


def scale_flip(img, fx, flip):
    dst = cv2.resize(img, (0, 0), fx=fx, fy=fx, interpolation=cv2.INTER_AREA)

    # dst = cv2.flip(img, 0) # 上下翻转
    # dst = cv2.flip(img, 1) # 左右翻转
    dst = cv2.flip(dst, flip)

    return dst


def add_noise(img, type, percetage):
    def clamp(pv):
        if pv > 255:
            return 255
        if pv < 0:
            return 0
        else:
            return pv

    # 定义添加椒盐噪声的函数
    def SaltAndPepper(src, percetage):
        NoiseImg = src.copy()
        NoiseNum = int(percetage * src.shape[0] * src.shape[1])
        for i in range(NoiseNum):
            randX = random.randint(2, src.shape[0] - 3)
            randY = random.randint(2, src.shape[1] - 3)
            if random.randint(0, 1) == 0:
                NoiseImg[randX - 1:randX + 1, randY - 1:randY + 1] = 0
            else:
                NoiseImg[randX - 1:randX + 1, randY - 1:randY + 1] = 255
        return NoiseImg

    def GaussianNoise(src, means, sigma, percetage):
        NoiseImg = src.copy()
        NoiseNum = int(percetage * src.shape[0] * src.shape[1])
        for i in range(NoiseNum):
            randX = random.randint(2, src.shape[0] - 3)
            randY = random.randint(2, src.shape[1] - 3)
            NoiseImg[randX - 1:randX + 1, randY - 1:randY + 1, 0] = clamp(
                NoiseImg[randX, randY, 0] + random.gauss(means, sigma))
            NoiseImg[randX - 1:randX + 1, randY - 1:randY + 1, 1] = clamp(
                NoiseImg[randX, randY, 1] + random.gauss(means, sigma))
            NoiseImg[randX - 1:randX + 1, randY - 1:randY + 1, 2] = clamp(
                NoiseImg[randX, randY, 2] + random.gauss(means, sigma))
        return NoiseImg

    if type == 0:
        return SaltAndPepper(img, percetage)
    elif type == 1:
        return GaussianNoise(img, 100, 60, percetage)
    else:
        raise Exception("no know type")


def image_in_image(img, background, fx):
    fx = background.shape[0] * fx / img.shape[0]
    fx = min(fx, background.shape[1] * fx / img.shape[1])
    fx = min(fx, background.shape[1] / img.shape[1] - 0.01, background.shape[0] / img.shape[0] - 0.01)
    fx = max(fx, 0.08)

    dst = cv2.resize(img, (0, 0), fx=fx, fy=fx, interpolation=cv2.INTER_AREA)

    dst_w, dst_h = dst.shape[:2]

    left = random.randint(0, background.shape[0] - dst_w - 1)
    top = random.randint(0, background.shape[1] - dst_h - 1)
    # cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]])
    # dst = src1 * alpha + src2 * beta + gamma;
    background[left:left + dst_w, top:top + dst_h] = cv2.addWeighted(
        background[left:left + dst_w, top:top + dst_h], 0, dst, 1, 0
    )

    return background


def gen_images_1(img, name, suffix, type_path="contrast_brightness"):
    brights_list = [
        [0.5, 0], [0.5, 50],
        [0.7, 0], [0.7, 50],
        [1.0, 0], [1.0, 50],
        [1.3, 0], [1.3, -50],
        [1.5, 0], [1.5, -50],
    ]

    if debug:
        tmp = img

    for i, one in enumerate(brights_list):
        try:
            dst = contrast_brightness(img, one[0], one[1])

            save_image(
                dst,
                os.path.join(save_path, type_path, str(i)),
                "{}_{}_{}.{}".format(name, type_path, i, suffix)
            )
            slog.info("{}\t{}.{} {} save_ok".format(type_path, name, suffix, i))

            if debug:
                tmp = np.hstack((tmp, dst))

        except Exception as e:
            slog.error("{}\t{}.{}\t{}\t{}".format(type_path, name, suffix, i, e))

    if debug:
        cv2.imshow("con_bri_demo", tmp)
        cv2.waitKey(0)
        cv2.destroyAllWindows()


def gen_images_2(img, name, suffix, type_path="mosaic"):
    mark_list = [
        [0.2, 0.1, 0.6, 0.5, 5],
        [0.2, 0.2, 0.5, 0.4, 10],
        [0.3, 0.4, 0.8, 0.7, 15],
        [0.4, 0.3, 0.9, 0.5, 20],
        [0.1, 0.2, 0.5, 0.6, 25],
        [0.6, 0.4, 0.9, 0.5, 30],
        [0.2, 0.2, 0.6, 0.6, 35],
        [0.0, 0.3, 0.6, 0.5, 40],
        [0.3, 0.2, 0.9, 0.6, 45],
        [0.2, 0.1, 0.8, 0.5, 50],
    ]

    if debug:
        tmp = img

    for i, one in enumerate(mark_list):
        try:
            one[0] = int(one[0] * img.shape[0])
            one[1] = int(one[1] * img.shape[1])
            one[2] = int(one[2] * img.shape[0])
            one[3] = int(one[3] * img.shape[1])

            dst = mark_image(img, one[0], one[1], one[2], one[3], one[4])

            save_image(
                dst,
                os.path.join(save_path, type_path, str(i)),
                "{}_{}_{}.{}".format(name, type_path, i, suffix)
            )
            slog.info("{}\t{}.{} {} save_ok".format(type_path, name, suffix, i))

            if debug:
                tmp = np.hstack((tmp, dst))

        except Exception as e:
            slog.error("{}\t{}.{}\t{}\t{}".format(type_path, name, suffix, i, e))

    if debug:
        cv2.imshow("con_bri_demo", tmp)
        cv2.waitKey(0)
        cv2.destroyAllWindows()


def gen_image_3(img, name, suffix, type_path="watermark"):
    operator_list = [
        [cv2.imread("./data/1.png", cv2.IMREAD_COLOR), 0.0],
        [cv2.imread("./data/1.png", cv2.IMREAD_COLOR), 0.5],
        [cv2.imread("./data/2.png", cv2.IMREAD_COLOR), 0.1],
        [cv2.imread("./data/2.png", cv2.IMREAD_COLOR), 0.6],
        [cv2.imread("./data/3.png", cv2.IMREAD_COLOR), 0.2],
        [cv2.imread("./data/3.png", cv2.IMREAD_COLOR), 0.7],
        [cv2.imread("./data/4.png", cv2.IMREAD_COLOR), 0.3],
        [cv2.imread("./data/4.png", cv2.IMREAD_COLOR), 0.8],
        [cv2.imread("./data/5.png", cv2.IMREAD_COLOR), 0.4],
        [cv2.imread("./data/5.png", cv2.IMREAD_COLOR), 0.9],
    ]

    if debug:
        tmp = img

    for i, one in enumerate(operator_list):
        try:
            dst = add_watermark(img, one[0], one[1])

            save_image(
                dst,
                os.path.join(save_path, type_path, str(i)),
                "{}_{}_{}.{}".format(name, type_path, i, suffix)
            )
            slog.info("{}\t{}.{} {} save_ok".format(type_path, name, suffix, i))

            if debug:
                tmp = np.hstack((tmp, dst))

        except Exception as e:
            slog.error("{}\t{}.{}\t{}\t{}".format(type_path, name, suffix, i, e))

    if debug:
        cv2.imshow("con_bri_demo", tmp)
        cv2.waitKey(0)
        cv2.destroyAllWindows()


def gen_image_4(img, name, suffix, type_path="scale_flip"):
    operator_list = [
        [0.5, 0], [0.5, 1],
        [0.6, 0], [0.6, 1],
        [0.7, 0], [0.7, 1],
        [0.8, 0], [0.8, 1],
        [0.9, 0], [0.9, 1],
    ]

    if debug:
        tmp = img

    for i, one in enumerate(operator_list):
        try:
            dst = scale_flip(img, one[0], one[1])

            save_image(
                dst,
                os.path.join(save_path, type_path, str(i)),
                "{}_{}_{}.{}".format(name, type_path, i, suffix)
            )
            slog.info("{}\t{}.{} {} save_ok".format(type_path, name, suffix, i))

            if debug:
                tmp = np.hstack((tmp,
                                 cv2.copyMakeBorder(
                                     dst,
                                     0, img.shape[1] - dst.shape[1], 0, img.shape[0] - dst.shape[0],
                                     cv2.BORDER_CONSTANT,
                                     value=[255, 255, 255]
                                 )))

        except Exception as e:
            slog.error("{}\t{}.{}\t{}\t{}".format(type_path, name, suffix, i, e))

    if debug:
        cv2.imshow("con_bri_demo", tmp)
        cv2.waitKey(0)
        cv2.destroyAllWindows()


def gen_image_5(img, name, suffix, type_path="noise"):
    operator_list = [
        [0.0005, 0], [0.0004, 1],
        [0.001, 0], [0.0009, 1],
        [0.004, 0], [0.0015, 1],
        [0.01, 0], [0.002, 1],
        [0.04, 0], [0.009, 1],
    ]

    if debug:
        tmp = img

    for i, one in enumerate(operator_list):
        try:
            dst = add_noise(img, one[1], one[0])

            save_image(
                dst,
                os.path.join(save_path, type_path, str(i)),
                "{}_{}_{}.{}".format(name, type_path, i, suffix)
            )
            slog.info("{}\t{}.{} {} save_ok".format(type_path, name, suffix, i))

            if debug:
                tmp = np.hstack((tmp, dst))

        except Exception as e:
            slog.error("{}\t{}.{}\t{}\t{}".format(type_path, name, suffix, i, e))

    if debug:
        cv2.imshow("con_bri_demo", tmp)
        cv2.waitKey(0)
        cv2.destroyAllWindows()


def gen_image_6(img, name, suffix, type_path="image_in_image"):
    operator_list = [
        [cv2.imread("./data/b1.jpg", cv2.IMREAD_COLOR), 0.5],
        [cv2.imread("./data/b1.jpg", cv2.IMREAD_COLOR), 0.6],
        [cv2.imread("./data/b2.jpg", cv2.IMREAD_COLOR), 0.4],
        [cv2.imread("./data/b2.jpg", cv2.IMREAD_COLOR), 0.7],
        [cv2.imread("./data/b3.jpg", cv2.IMREAD_COLOR), 0.3],
        [cv2.imread("./data/b3.jpg", cv2.IMREAD_COLOR), 0.8],
        [cv2.imread("./data/b4.jpg", cv2.IMREAD_COLOR), 0.4],
        [cv2.imread("./data/b4.jpg", cv2.IMREAD_COLOR), 0.9],
        [cv2.imread("./data/b5.jpg", cv2.IMREAD_COLOR), 0.5],
        [cv2.imread("./data/b5.jpg", cv2.IMREAD_COLOR), 0.3],
    ]

    if debug:
        tmp = cv2.resize(operator_list[0][0], (512, 512))

    for i, one in enumerate(operator_list):
        try:
            dst = image_in_image(img, one[0], one[1])

            save_image(
                dst,
                os.path.join(save_path, type_path, str(i)),
                "{}_{}_{}.{}".format(name, type_path, i, suffix)
            )
            slog.info("{}\t{}.{} {} save_ok".format(type_path, name, suffix, i))

            if debug:
                tmp = np.hstack((tmp, cv2.resize(dst, (512, 512))))

        except Exception as e:
            slog.error("{}\t{}.{}\t{}\t{}".format(type_path, name, suffix, i, e))

    if debug:
        cv2.imshow("con_bri_demo", tmp)
        cv2.waitKey(0)
        cv2.destroyAllWindows()


"""
tname = "t1"
tsuffix = "jpg"
path = "./data/{}.{}".format(tname, tsuffix)

img1 = cv2.imread(path, cv2.IMREAD_COLOR)
gen_images_1(cv2.imread(path, cv2.IMREAD_GRAYSCALE), tname, tsuffix)
# gen_images_2(img1, tname, tsuffix)
# gen_image_3(img1, tname, tsuffix)
# gen_image_4(img1, tname, tsuffix)
# gen_image_5(img1, tname, tsuffix)
# gen_image_6(img1, tname, tsuffix)

"""
root_path = "./ty"
# name_lists = [i for i in range(1, 60001)]
# random.shuffle(name_lists)

# time1 = time.time()
for one_image in os.listdir(root_path):
    img = cv2.imread(os.path.join(root_path, one_image), cv2.IMREAD_COLOR)
    img_name, suffix = one_image.split(".")

    gen_images_1(cv2.imread(os.path.join(root_path, one_image), cv2.IMREAD_GRAYSCALE), img_name, suffix)
    gen_images_2(img, img_name, suffix)
    gen_image_3(img, img_name, suffix)
    gen_image_4(img, img_name, suffix)
    gen_image_5(img, img_name, suffix)
    gen_image_6(img, img_name, suffix)


# print("all: {}s".format(time.time() - time1))

def check_image_size():
    import cv2
    import os
    path = "./pics"
    for one_image in os.listdir(path):
        img = cv2.imread(os.path.join(path, one_image), cv2.IMREAD_COLOR)
        w, h = img.shape[:2]
        if w < 640 or h < 480:
            print(os.path.join(path, one_image))
            os.remove(os.path.join(path, one_image))

你可能感兴趣的:(Python)