1.首先,我们用sift算法生成图像库中每幅图的特征点及描述符。
2.再用k-means算法对图像库中的特征点进行训练,生成类心。
3.生成每幅图像的BOF,具体方法为:判断图像的每个特征点与哪个类心最近,最近则放入该类心,最后将生成一列频数表,即初步的无权BOF。
4.通过tf-idf对频数表加上权重,生成最终的bof。(因为每个类心对图像的影响不同。比如超市里条形码中的第一位总是6,它对辨别产品毫无作用,因此权重要减小)。
5.对query进来的图像也进行3.4步操作,生成一列query图的BOF。
6.将query的Bof向量与图像库中每幅图的Bof向量求夹角,夹角最小的即为匹配对象。
Bag-of-Features模型仿照文本检索领域的Bag-of-Words方法,把每幅图像描述为一个局部区域/关键点(Patches/Key Points)特征的无序集合。使用某种聚类算法(如K-means)将局部特征进行聚类,每个聚类中心被看作是词典中的一个视觉词汇(Visual Word),相当于文本检索中的词,视觉词汇由聚类中心对应特征形成的码字(code word)来表示(可看当为一种特征量化过程)。所有视觉词汇形成一个视觉词典(Visual Vocabulary),对应一个码书(code book),即码字的集合,词典中所含词的个数反映了词典的大小。图像中的每个特征都将被映射到视觉词典的某个词上,这种映射可以通过计算特征间的距离去实现,然后统计每个视觉词的出现与否或次数,图像可描述为一个维数相同的直方图向量,即Bag-of-Features。
Bag-of-Features更多地是用于图像分类或对象识别。在上述思路下对训练集提取Bag-of-Features特征,在某种监督学习(如:SVM)的策略下,对训练集的Bag-of-Features特征向量进行训练,获得对象或场景的分类模型;对于待测图像,提取局部特征,计算局部特征与词典中每个码字的特征距离,选取最近距离的码字代表该特征,建立一个统计直方图,统计属于每个码字的特征个数,即为待测图像之Bag-of-Features特征;在分类模型下,对该特征进行预测从实现对待测图像的分类。
Classification Process
1、局部特征提取:通过分割、密集或随机采集、关键点或稳定区域、显著区域等方式使图像形成不同的patches,并获得各patches处的特征。
由聚类中心代表的视觉词汇形成视觉词典:
3、生成码书,即构造Bag-of-Features特征,也即局部特征投影过程:
4、SVM训练BOF特征得分类模型,对待测图像BOF特征预测:
Bag-of-words在CV中的应用首先出现在Andrew Zisserman[6]中为解决对视频场景的搜索,其提出了使用Bag-of-words关键点投影的方法来表示图像信息。后续更多的研究者归结此方法为Bag-of-Features,并用于图像分类、目标识别和图像检索。在Bag-of-Features方法的基础上,Andrew Zisserman进一步借鉴文本检索中TF-IDF模型(Term Frequency一Inverse Document Frequency)来计算Bag-of-Features特征向量。接下来便可以使用文本搜索引擎中的反向索引技术对图像建立索引,高效的进行图像检索。
Hamming embedding and weak geometric consistency for large scale image search
实现检索的过程同分类的过程无本质的差异,更多的是细节处理上的差异:
1、局部特征提取;
2、构建视觉词典;
3、生成原始BOF特征;
4、引入TF-IDF权值:
TF-IDF是一种用于信息检索的常用加权技术,在文本检索中,用以评估词语对于一个文件数据库中的其中一份文件的重要程度。词语的重要性随着它在文件中出现的频率成正比增加,但同时会随着它在文件数据库中出现的频率成反比下降。TF的主要思想是:如果某个关键词在一篇文章中出现的频率高,说明该词语能够表征文章的内容,该关键词在其它文章中很少出现,则认为此词语具有很好的类别区分度,对分类有很大的贡献。IDF的主要思想是:如果文件数据库中包含词语A的文件越少,则IDF越大,则说明词语A具有很好的类别区分能力。
词频(Term Frequency,TF)指的是一个给定的词语在该文件中出现的次数。如:tf = 0.030 ( 3/100 )表示在包括100个词语的文档中, 词语'A'出现了3次。
逆文档频率(Inverse Document Frequency,IDF)是描述了某一个特定词语的普遍重要性,如果某词语在许多文档中都出现过,表明它对文档的区分力不强,则赋予较小的权重;反之亦然。如:idf = 13.287 ( log (10,000,000/1,000) )表示在总的10,000,000个文档中,有1,000个包含词语'A'。
最终的TF-IDF权值为词频与逆文档频率的乘积。
5、对查询图像生成同样的带权BOF特征;
6、查询:初步是通过余弦距离衡量,至于建立索引的方法还未学习到,望看客指点。
Issues
1、使用k-means聚类,除了其K和初始聚类中心选择的问题外,对于海量数据,输入矩阵的巨大将使得内存溢出及效率低下。有方法是在海量图片中抽取部分训练集分类,使用朴素贝叶斯分类的方法对图库中其余图片进行自动分类。另外,由于图片爬虫在不断更新后台图像集,重新聚类的代价显而易见。
2、字典大小的选择也是问题,字典过大,单词缺乏一般性,对噪声敏感,计算量大,关键是图象投影后的维数高;字典太小,单词区分性能差,对相似的目标特征无法表示。
3、相似性测度函数用来将图象特征分类到单词本的对应单词上,其涉及线型核,塌方距离测度核,直方图交叉核等的选择。
4、将图像表示成一个无序局部特征集的特征包方法,丢掉了所有的关于空间特征布局的信息,在描述性上具有一定的有限性。为此, Schmid[2]提出了基于空间金字塔的Bag-of-Features。
5、Jégou[7]提出VLAD(vector of locally aggregated descriptors),其方法是如同BOF先建立出含有k个visual word的codebook,而不同于BOF将一个local descriptor用NN分类到最近的visual word中,VLAD所采用的是计算出local descriptor和每个visual word(ci)在每个分量上的差距,将每个分量的差距形成一个新的向量来代表图片。
Resources
Two bag-of-words classifiers(Matlab)
Code for Vocabulary tree based image search(C++)
matlab+VC 实现Bag of features
Bag of Words/Bag of Features的Matlab源码
一个用BoW|Pyramid BoW+SVM进行图像分类的Matlab Demo
Bag-Of-Words中K-Means聚类的效率优化
aMMAI BLOG
Visual Wordsを用いた類似画像検索
bayonを使って画像からbag-of-keypointsを求める
Paper
1.Bag of words models(.ppt ) byLi Fei-Fei(Stanford)
2. Spatial Pyramid Matching:
3. Improving bag-of-features for large scale image search
4. Hamming embedding and weak geometric consistency for large scale image search. Hervé Jégou, Matthijs Douze, Cordelia Schmid
European Conference on Computer Vision - oct 2008.[pdf][slides]
5. Bag-of-colors for improved image search. Christian Wengert, Matthijs Douze, Hervé Jégou,ACM Multimedia (2011).[pdf]
6. Video Google: A Text Retrieval Approach to Object Matching in Videos . J. Sivic, A. Zisserman. IEEE International Conference on Computer Vision, Volume 2, page 1470--1477, 2003.[PDF ]
7.Aggregating local descriptors into a compact image representation. Hervé Jégou, Matthijs Douze, Cordelia Schmid, Patrick Pérez. IEEE Conference on Computer Vision & Pattern Recognition - jun 2010. [pdf][sildes]