查找是在大量的信息中寻找一个特定的信息元素,在计算机应用中,查找是常用的基本运算,例如编译程序中符号表的查找。本文简单概括性的介绍了常见的七种查找算法,说是七种,其实二分查找、插值查找以及斐波那契查找都可以归为一类——插值查找。插值查找和斐波那契查找是在二分查找的基础上的优化查找算法。
查找定义:根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录)。
查找算法分类:
1)静态查找和动态查找;
注:静态或者动态都是针对查找表而言的。动态表指查找表中有删除和插入操作的表。
2)无序查找和有序查找。
平均查找长度(Average Search Length,ASL):需和指定key进行比较的关键字的个数的期望值,称为查找算法在查找成功时的平均查找长度。
对于含有n个数据元素的查找表,查找成功的平均查找长度为:ASL = Pi*Ci的和。
Pi:查找表中第i个数据元素的概率。
Ci:找到第i个数据元素时已经比较过的次数。
1)、算法思想
说明:顺序查找适合于存储结构为顺序存储或链接存储的线性表。
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。
在程序中初始化创建查找表时,由于是顺序存储,所以将所有的数据元素存储在数组中,但是把第一个位置留给了用户用于查找的关键字。例如,在顺序表{1,2,3,4,5,6}
中查找数据元素值为 7 的元素,则添加后的顺序表为:
2)、C++程序实现
从头向尾的顺序查找:
//顺序查找C语言实现
//基本思路:用顺序结构存储数据(数组、链表),从前到后依次查询目标值,
// 如果发现则返回查找到的值,否则返回0.
#include
int FindBySeq(int *ListSeq, int ListLength, int KeyData);
int main()
{
int TestData[5] = { 34, 35, 26, 89, 56 };
int retData = FindBySeq(TestData, 5, 89);
printf("retData: %d\n", retData);
return 0;
}
int FindBySeq(int *ListSeq, int ListLength, int KeyData)
{
int tmp = 0;
int length = ListLength;
for (int i = 0; i < ListLength; i++)
{
if (ListSeq[i] == KeyData)
return i;
}
return 0;
}
输出结果:
retData: 3
从尾向头的顺序查找:
#include
#include
#define keyType int
typedef struct {
keyType key;//查找表中每个数据元素的值
//如果需要,还可以添加其他属性
}ElemType;
typedef struct{
ElemType *elem;//存放查找表中数据元素的数组
int length;//记录查找表中数据的总数量
}SSTable;
//创建查找表
void Create(SSTable **st,int length){
(*st)=(SSTable*)malloc(sizeof(SSTable));
(*st)->length=length;
(*st)->elem =(ElemType*)malloc((length+1)*sizeof(ElemType));
printf("输入表中的数据元素:\n");
//根据查找表中数据元素的总长度,在存储时,从数组下标为 1 的空间开始存储数据
for (int i=1; i<=length; i++) {
scanf("%d",&((*st)->elem[i].key));
}
}
//查找表查找的功能函数,其中key为关键字
int Search_seq(SSTable *st,keyType key){
st->elem[0].key=key;//将关键字作为一个数据元素存放到查找表的第一个位置,起监视哨的作用
int i=st->length;
//从查找表的最后一个数据元素依次遍历,一直遍历到数组下标为0
while (st->elem[i].key!=key) {
i--;
}
//如果 i=0,说明查找失败;反之,返回的是含有关键字key的数据元素在查找表中的位置
return i;
}
int main(int argc, const char * argv[]) {
SSTable *st;
Create(&st, 6);
getchar();
printf("请输入查找数据的关键字:\n");
int key;
scanf("%d",&key);
int location=Search_seq(st, key);
if (location==0) {
printf("查找失败");
}else{
printf("数据在查找表中的位置为:%d",location);
}
return 0;
}
输入表中的数据元素:
1 2 3 4 5 6
请输入查找数据的关键字:
2
数据在查找表中的位置为:2
3)、算法分析
查找成功时的平均查找长度为:(假设每个数据元素的概率相等) ASL = 1/n(1+2+3+…+n) = (n+1)/2 ;
当查找不成功时,需要n+1次比较,时间复杂度为O(n);
所以,顺序查找的时间复杂度为O(n)。
1)、基本思想
说明:元素必须是有序的,如果是无序的则要先进行排序操作。
基本思想:也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。
注:折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。
例如,在{53,14,99,38,45,87,10,81,47,21}
这个查找表使用折半查找算法查找数据之前,需要首先对该表中的数据按照所查的关键字进行排序:{10,14,21,38,45,47,53,81,87,99}
,采用折半查找算法查找关键字为 47 的过程为:
2)、C++程序实现:
//二分查找(折半查找),版本1
int BinarySearch1(int a[], int value, int n)
{
int low, high, mid;
low = 0;
high = n-1;
while(low<=high)
{
mid = (low+high)/2;
if(a[mid]==value)
return mid;
if(a[mid]>value)
high = mid-1;
if(a[mid] high)
return -1;
if(a[mid]==value)
return mid;
if(a[mid]>value)
return BinarySearch2(a, value, low, mid-1);
if(a[mid]
3)、算法分析:
折半查找的运行过程可以用二叉树来描述,这棵树通常称为“判定树”。如对数据{5 13 19 21 37 56 64 75 80 88 92}
进行查找21
的过程,对应的判定树如下图:
在判定树中可以看到,如果想在查找表中查找 21 的位置,只需要进行 3 次比较,依次和 56、19、21 进行比较,而比较的次数恰好是该关键字所在判定树中的层次(关键字 21 在判定树中的第 3 层)。
对于具有 n 个结点(查找表中含有 n 个关键字)的判定树,它的层次数至多为: l o g 2 n + 1 log_2n + 1 log2n+1(如果结果不是整数,则做取整操作,例如: l o g 2 11 + 1 = 3 + 1 = 4 log_211 +1 = 3 + 1 = 4 log211+1=3+1=4 )。
同时,在查找表中各个关键字被查找概率相同的情况下,折半查找的平均查找长度为:ASL = log_2(n+1) – 1。
所以:最坏情况下,关键词比较次数为 l o g 2 ( n + 1 ) log_2(n+1) log2(n+1),且期望时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n)。
1)、基本思想
基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
在介绍插值查找之前,首先考虑一个新问题,为什么上述算法一定要是折半,而不是折四分之一或者折更多呢?
打个比方,在英文字典里面查“apple”,你下意识翻开字典是翻前面的书页还是后面的书页呢?如果再让你查“zoo”,你又怎么查?很显然,这里你绝对不会是从中间开始查起,而是有一定目的的往前或往后翻。
同样的,比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。
经过以上分析,折半查找这种查找方式,不是自适应的(也就是说是傻瓜式的)。二分查找中查找点计算如下:
m i d = ( l o w + h i g h ) / 2 , 即 m i d = l o w + 1 / 2 ∗ ( h i g h − l o w ) mid=(low+high)/2, 即 mid=low+1/2*(high-low) mid=(low+high)/2,即mid=low+1/2∗(high−low)
通过类比,我们可以将查找的点改进为如下:
m i d = l o w + ( k e y − a [ l o w ] ) / ( a [ h i g h ] − a [ l o w ] ) ∗ ( h i g h − l o w ) mid=low+(key-a[low])/(a[high]-a[low])*(high-low) mid=low+(key−a[low])/(a[high]−a[low])∗(high−low)
也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
注:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
2)、C++程序代码
#include
//插值查找-C语言实现
//基本思路:二分查找改进版,只需改一行代码。
// mid=low+(key-a[low])/(a[high]-a[low])*(high-low)
int insertSearch(int *sortedSeq, int seqLength, int keyData);
int main()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int location;
int target = 4;
location = insertSearch(array, 9, target);
printf("%d\n", location);
return 0;
}
int insertSearch(int *sortedSeq, int seqLength, int keyData)
{
int low = 0, mid, high = seqLength - 1;
while (low <= high)
{
mid = low + (keyData - sortedSeq[low]) / (sortedSeq[high] - sortedSeq[low]);
if (keyData < sortedSeq[mid])
{
high = mid - 1;//是mid-1,因为mid已经比较过了
}
else if (keyData > sortedSeq[mid])
{
low = mid + 1;
}
else
{
return mid;
}
}
return -1;
}
3)、算法分析
复杂度分析:查找成功或者失败的时间复杂度均为O(log2(log2n))。
1)、基本思想
基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。
在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。
黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。
0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。
大家记不记得斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(从第三个数开始,后边每一个数都是前两个数的和)。然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。
相对于折半查找,一般将待比较的key值与第mid=(low+high)/2位置的元素比较,比较结果分三种情况:
斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;
开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种
1)相等,mid位置的元素即为所求
2)>,low=mid+1,k-=2;
说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。
3)<,high=mid-1,k-=1。
说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归 的应用斐波那契查找。
2)、C++程序代码
在这里插入代码片#include
#include
#define MAXN 20
/*
*产生斐波那契数列
* */
void Fibonacci(int *f)
{
int i;
f[0] = 1;
f[1] = 1;
for (i = 2; i < MAXN; ++i)
f[i] = f[i - 2] + f[i - 1];
}
/*
* 查找
* */
int Fibonacci_Search(int *a, int key, int n)
{
int i, low = 0, high = n - 1;
int mid = 0;
int k = 0;
int F[MAXN];
Fibonacci(F);
while (n > F[k] - 1) //计算出n在斐波那契中的数列
++k;
for (i = n; i < F[k] - 1; ++i) //把数组补全
a[i] = a[high];
while (low <= high)
{
mid = low + F[k - 1] - 1; //根据斐波那契数列进行黄金分割
if (a[mid] > key)
{
high = mid - 1;
k = k - 1;
}
else if (a[mid] < key)
{
low = mid + 1;
k = k - 2;
}
else
{
if (mid <= high) //如果为真则找到相应的位置
return mid;
else
return -1;
}
}
return 0;
}
int main()
{
int a[MAXN] = { 5, 15, 19, 20, 25, 31, 38, 41, 45, 49, 52, 55, 57 };
int k, res = 0;
printf("请输入要查找的数字:\n");
scanf("%d", &k);
res = Fibonacci_Search(a, k, 13);
if (res != -1)
printf("在数组的第%d个位置找到元素:%d\n", res + 1, k);
else
printf("未在数组中找到元素:%d\n", k);
return 0;
}
3)、算法分析
复杂度分析:最坏情况下,时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n),且其期望复杂度也为 O ( l o g 2 n ) O(log_2n) O(log2n)。
基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree)或者是一棵空树,或者是具有下列性质的二叉树:
二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。
不同形态的二叉查找树如下图所示:
**复杂度分析:**它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡(比如,我们查找上图(b)中的“93”,我们需要进行n次查找操作)。我们追求的是在最坏的情况下仍然有较好的时间复杂度,这就是平衡查找树设计的初衷。
下图为二叉树查找和顺序查找以及二分查找性能的对比图:
基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。
C++程序实现:
2-3查找树定义:和二叉树不一样,2-3树运行每个节点保存1个或者两个的值。对于普通的2节点(2-node),他保存1个key和左右两个自己点。对应3节点(3-node),保存两个Key,2-3查找树的定义如下:
2-3树的查找效率与树的高度是息息相关的。
距离来说,对于1百万个节点的2-3树,树的高度为12-20之间,对于10亿个节点的2-3树,树的高度为18-30之间。
对于插入来说,只需要常数次操作即可完成,因为他只需要修改与该节点关联的节点即可,不需要检查其他节点,所以效率和查找类似。下面是2-3查找树的效率:
2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgn,从而保证了最坏情况下的时间复杂度。但是2-3树实现起来比较复杂,于是就有了一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree)。
基本思想:红黑树的思想就是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息。红黑树中将节点之间的链接分为两种不同类型,红色链接,他用来链接两个2-nodes节点来表示一个3-nodes节点。黑色链接用来链接普通的2-3节点。特别的,使用红色链接的两个2-nodes来表示一个3-nodes节点,并且向左倾斜,即一个2-node是另一个2-node的左子节点。这种做法的好处是查找的时候不用做任何修改,和普通的二叉查找树相同。
红黑树是一种具有红色和黑色链接的平衡查找树,同时满足:
红黑树的性质:整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同(2-3树的第2)性质,从根节点到叶子节点的距离都相等)。
复杂度分析:最坏的情况就是,红黑树中除了最左侧路径全部是由3-node节点组成,即红黑相间的路径长度是全黑路径长度的2倍。
下图是一个典型的红黑树,从中可以看到最长的路径(红黑相间的路径)是最短路径的2倍:
红黑树的平均高度大约为logn。
下图是红黑树在各种情况下的时间复杂度,可以看出红黑树是2-3查找树的一种实现,它能保证最坏情况下仍然具有对数的时间复杂度。
红黑树这种数据结构应用十分广泛,在多种编程语言中被用作符号表的实现,如:
平衡查找树中的2-3树以及其实现红黑树。2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key。
维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(log n)的时间复杂度运行进行查找、顺序读取、插入和删除的数据结构。B树,概括来说是一个节点可以拥有多于2个子节点的二叉查找树。与自平衡二叉查找树不同,B树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。普遍运用在数据库和文件系统。
B树定义:
B树可以看作是对2-3查找树的一种扩展,即他允许每个节点有M-1个子节点。
下图是一个M=4 阶的B树:
可以看到B树是2-3树的一种扩展,他允许一个节点有多于2个的元素。B树的插入及平衡化操作和2-3树很相似,这里就不介绍了。下面是往B树中依次插入
6 10 4 14 5 11 15 3 2 12 1 7 8 8 6 3 6 21 5 15 15 6 32 23 45 65 7 8 6 5 4的演示动画:
B和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。
B+ 树的优点在于:
但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的元素可能离根节点更近,因此访问也更迅速。
下面是B 树和B+树的区别图:
B/B+树常用于文件系统和数据库系统中,它通过对每个节点存储个数的扩展,使得对连续的数据能够进行较快的定位和访问,能够有效减少查找时间,提高存储的空间局部性从而减少IO操作。它广泛用于文件系统及数据库中,如:
树表查找总结:
二叉查找树平均查找性能不错,为O(logn),但是最坏情况会退化为O(n)。在二叉查找树的基础上进行优化,我们可以使用平衡查找树。平衡查找树中的2-3查找树,这种数据结构在插入之后能够进行自平衡操作,从而保证了树的高度在一定的范围内进而能够保证最坏情况下的时间复杂度。但是2-3查找树实现起来比较困难,红黑树是2-3树的一种简单高效的实现,他巧妙地使用颜色标记来替代2-3树中比较难处理的3-node节点问题。红黑树是一种比较高效的平衡查找树,应用非常广泛,很多编程语言的内部实现都或多或少的采用了红黑树。
除此之外,2-3查找树的另一个扩展——B/B+平衡树,在文件系统和数据库系统中有着广泛的应用。