红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。
红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。
1 红外遥控系统
通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。
2 遥控发射器及其编码
遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:
采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。
上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3所示。
UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。
遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。
当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。
代码格式(以接收代码为准,接收代码与发射代码反向)
①位定义
②单发代码格式
③连发代码格式
注:代码宽度算法:
16位地址码的最短宽度:1.12×16=18ms 16位地址码的最长宽度:2.24ms×16=36ms
易知8位数据代码及其8位反代码的宽度和不变:(1.12ms+2.24ms)×8=27ms
所以32位代码的宽度为(18ms+27ms)~(36ms+27ms)
1. 解码的关键是如何识别“0”和“1”,从位的定义我们可以发现“0”、“1”均以0.56ms的低电平开始,不同的是高电平的宽度不同,“0”为0.56ms,“1”为1.68ms,所以必须根据高电平的宽度区别“0”和“1”。如果从0.56ms低电平过后,开始延时,0.56ms以后,若读到的电平为低,说明该位为“0”,反之则为“1”,为了可靠起见,延时必须比0.56ms长些,但又不能超过1.12ms,否则如果该位为“0”,读到的已是下一位的高电平,因此取(1.12ms+0.56ms)/2=0.84ms最为可靠,一般取0.84ms左右均可。
2. 根据码的格式,应该等待9ms的起始码和4.5ms的结果码完成后才能读码。
接收器及解码
一体化红外线接收器是一种集红外线接收和放大于一体,不需要任何外接元件,就能完成从红外线接收到输出与TTL电平信号兼容的所有工作,而体积和普通的塑封三极管大小一样,它适合于各种红外线遥控和红外线数据传输。
下面是一个对51实验板配套的红外线遥控器的解码程序,它可以把上图32键的红外遥控器每一个按键的键值读出来,并且通过实验板上P1口的8个LED显示出来,在解码成功的同时并且能发出“嘀嘀嘀”的提示音。
红外遥控器软件解码原理及程序 红外一开始发送一段13.5ms的引导码,引导码由9ms的高电平和4.5ms的低电平组成,跟着引导码是系统码,系统反码,按键码,按键反码,如果按着键不放,则遥控器则发送一段重复码,重复码由9ms的高电平,2.25ms的低电平,跟着是一个短脉冲,本程序经过试用,能解大部分遥控器的编码! #include "at89x52.h" #define NULL 0x00//数据无效 #define RESET 0X01//程序复位 #define REQUEST 0X02//请求信号 #define ACK 0x03//应答信号,在接收数据后发送ACK信号表示数据接收正确, 也位请求信号的应答信号 #define NACK 0x04//应答信号,表示接收数据错误 #define BUSY 0x05//忙信号,表示正在忙 #define FREE 0x06//空闲信号,表示处于空闲状态 #define READ_IR 0x0b//读取红外 #define STORE_IR 0x0c//保存数据 #define READ_KEY 0x0d//读取键值 #define RECEIVE 0Xf400//接收缓冲开始地址 #define SEND 0xfa00//发送缓冲开始地址 #define IR 0x50//红外接收缓冲开始地址 #define HEAD 0xaa//数据帧头 #define TAIL 0x55//数据帧尾 #define SDA P1_7 #define SCL P1_6 unsigned char xdata *buf1; //接受数据缓冲 unsigned int buf1_length; //接收到的数据实际长度 unsigned char xdata *buf2; //发送数据缓冲 unsigned int buf2_length; //要发送的数据实际长度 bit buf1_flag; //接收标志,1表示接受到一个数据帧,0表示没有接受到数据帧或数据帧为空 bit buf2_flag; //发送标志,1表示需要发送或没发送完毕,0表示没有要发送的数据或发送完毕 unsigned char state1,state2; //用来标志接收字符的状态,state1用来表示接收状态,state2用来表示发送状态 unsigned char data *ir; union{ unsigned char a[2]; unsigned int b; unsigned char data *p1[2]; unsigned int data *p2[2]; unsigned char xdata *p3; //红外缓冲的指针 unsigned int xdata *p4; }p; //union{ // // unsigned char a[2]; // // unsigned int b; // unsigned char data *p1[2]; // unsigned int data *p2[2]; // unsigned char xdata *p3; // unsigned int xdata *p4; //地址指针 //}q; // union{ unsigned char a[2]; unsigned int b; }count; union{ unsigned char a[2]; unsigned int b; }temp; union{ unsigned char a[4]; unsigned int b[2]; unsigned long c; }ir_code; union{ unsigned char a[4]; unsigned int b[2]; unsigned long c; unsigned char data *p1[4]; unsigned int data *p2[4]; unsigned char xdata *p3[2]; unsigned int xdata *p4[2]; }i; unsigned char ir_key; bit ir_flag; //红外接收标志,0为缓冲区空,1为接收成功,2为缓冲溢出 void sub(void); void delay(void); void ie_0(void); void tf_0(void); void ie_1(void); void tf_1(void); void tf_2(void); void read_ir(void); void ir_jiema(void); void ir_init(void); void ir_exit(void); void store_ir(void); void read_key(void); void reset_iic(void); unsigned char read_byte_ack_iic(void); unsigned char read_byte_nack_iic(void); bit write_byte_iic(unsigned char a); void send_ack_iic(void); void send_nack_iic(void); bit receive_ack_iic(void); void start_iic(void); void stop_iic(void); void write_key_data(unsigned char a); unsigned int read_key_data(unsigned char a); void ie0(void) interrupt 0{ie_0();} void tf0(void) interrupt 1{tf_0();} void ie1(void) interrupt 2{ie_1();} void tf1(void) interrupt 3{tf_1();tf_2();} void tf2(void) interrupt 5{ //采用中断方式跟查询方式相结合的办法解 码 EA=0; //禁止中断 if(TF2){ //判断是否是溢出还是电平变化产生的中断 TF2=0; //如果是溢出产生的中断则清除溢出位,重 新开放中断退出 EA=1; goto end; } EXF2=0; //清除电平变化产生的中断位 *ir=RCAP2H; //把捕捉的数保存起来 ir++; *ir=RCAP2L; *ir++; F0=1; TR0=1; //开启计数器0 loop: TL0=0; //将计数器0重新置为零 TH0=0; while(!EXF2){ //查询等待EXF2变为1 if(TF0)goto exit; //检查有没超时,如果超时则退出 }; EXF2=0; //将EXF2清零 if(!TH0) //判断是否是长低电平脉冲过来了 { //不是长低电平脉冲而是短低电平 if(F0)count.b++; //短脉冲数加一 temp.a[0]=RCAP2H; //将捕捉数临时存放起来 temp.a[1]=RCAP2L; goto loop; //返回继续查询 } else{ //是低电平脉冲,则进行处理 F0=0; *ir=temp.a[0]; //把连续的短脉冲总时间记录下来 ir++; *ir=temp.a[1]; ir++; *ir=RCAP2H; //把长电平脉冲时间记录下来 ir++; *ir=RCAP2L; ir++; if(ir>=0xda) { goto exit; //判断是否溢出缓冲,如果溢出则失败退出 } goto loop; //返回继续查询 } exit: ir_flag=1; //置ir_flag为1表示接收成功 end: ; } void rs232(void) interrupt 4{ static unsigned char sbuf1,sbuf2,rsbuf1,rsbuf2; //sbuf1,sbuf2用来接收发送临时用,rsbuf1,rsbuf2用来分别用来存放接收发送的半字节 EA=0; //禁止中断 if(RI){ RI=0; //清除接收中断标志位 sbuf1=SBUF; //将接收缓冲的字符复制到sbuf1 if(sbuf1==HEAD){ //判断是否帧开头 state1=10; //是则把state赋值为10 buf1=RECEIVE; //初始化接收地 址 } else{ switch(state1){ case 10:sbuf2=sbuf1>>4; //把高半字节右移到的半字节 sbuf2=~sbuf2; //把低半字节取反 if((sbuf2&0x0f)!=(sbuf1&0x0f)) //判断接收是否正确 { //接收错误,有可能接收的是数据帧尾,也有可能是接收错误 if(sbuf1==TAIL) //判断是否接收到数据帧尾 { //是接收到数据帧尾 buf1=RECEIVE; //初始化接收的地址 if(*buf1==RESET) //判断是否为复位命令 { ES=0; sbuf2=SP+1; for(p.p1[0]=SP-0x10;p.p1[0]<=sbuf2;p.p1 [0]++)*p.p1[0]=0; } state1=0; //将接收状态标志置为零,接收下一个数据帧 buf1_flag=1; //置接收标志为1,表示已经接收到一个数据帧 REN=0; //禁止接收 } else { //不是接受到数据帧尾,表明接收错误 state1=0; // 将接收状态标志置为零,重新接收 buf1=RECEIVE; //初始化发送的地址 *buf1=NACK; //把NACK信号存入接收缓冲里 buf1_flag=1; //置标志位为1,使主程序能对接收错误进行处理 REN=0; //禁止接收 } } else { //接收正确 rsbuf1=~sbuf1; //按位取反,使高半字节变原码 rsbuf1&=0xf0; //仅保留高半字节,低半字节去掉 state1=20; //将状态标志置为20,准备接收低半字节 } break; case 20:sbuf2=sbuf1>>4; //把高半字节右移到的半字节 sbuf2=~sbuf2; //将低半字节取反 if((sbuf2&0x0f)!=(sbuf1&0x0f)) //判断接收是否正确 { //接受错误 state1=0; // 将接收状态标志置为零,重新接收 buf1=RECEIVE; //初始化接收的地址 *buf1=NACK; //把NACK信号存入发送缓冲里 buf1_flag=1; //置标志位为1,使主程序能对接收错误进行处理 REN=0; //禁止接收 } else { sbuf1&=0x0f; //仅保留低半字节,去掉高半字节 rsbuf1|=sbuf1; //高低半字节合并 *buf1++=rsbuf1; //将接收的数据保存至接收缓冲里,并且数据指针加一 buf1_length++; //接收数据长度加一 state1=10; //将state1置为10,准备接收下个字节的高半字节 } break; } } } else{ TI=0; //清除发送中断标志 if(buf2_length) //判断发送长度是否为零 { //发送长度不为零 if(state2==0) //判断是否发送高半字节 { //发送高半字节 sbuf2=*buf2; //将要发送的字节送到sbuf2 rsbuf2=~sbuf2; //取反,使高半字节变为反码 sbuf2>>=4; //将高半字节右移到低半字节 rsbuf2&=0xf0; //保留高半字节,去掉低半字节 sbuf2&=0x0f; //保留低半字节,去掉高半字节 rsbuf2|=sbuf2; //合并高低半字节 SBUF=rsbuf2; //发送出去 state2=10; //将state2置为10准备发送下半字节 } else { //发送低半字节 sbuf2=*buf2; //将要发送的字节送到sbuf2 buf2++; //指针加一 buf2_length--; //发送数据长度减一 rsbuf2=~sbuf2; //取反,使低半字节变为反码 rsbuf2<<=4; //将低半字节反码左移到高半字节 rsbuf2&=0xf0; //保留高半字节,去掉低半字节 sbuf2&=0x0f; //保留低半字节,去掉高半字节 rsbuf2|=sbuf2; //合并高低半字节 SBUF=rsbuf2; //发送出 state2=0; } } else { //如果发送数据长度为零则发送数据帧尾 if(buf2_flag){ //判断是否发过数据帧尾 SBUF=TAIL; //将数据帧尾发送出去 while(TI==0); TI=0; buf2_flag=0; //置发送标志为零,表示发送完毕 } } } EA=1; //开放中断 } |
机器人基地推出的此款产品:
IR Receiver Module是一款Arduino兼容的38KHz红外线接收模块,可接收标准38KHz调制的遥控器信号,通过对Arduino进行编程,即可实现对遥控器信号的解码操作。可使用Arduino制作一款带学习功能的万能遥控器。
1.CR2025环保纽扣电池,容量160mah
2.发射距离:8m以上(具体和周围环境、接收端的灵敏度等因素有关)
3.有效角度:60度
4.面贴材料:0.125mmPET,有效寿命2万次。
5.品质稳定,性价比高
6.静态电流3-5uA,动态电流3-5mA。
产品说明书预览:
OK,介绍完毕~
工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。
红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。
1 红外遥控系统
通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。
红外线遥控器解码原理
2 遥控发射器及其编码
遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:
采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。
红外线遥控器解码原理
上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3所示。
红外线遥控器解码原理
UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。
遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。
当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。
代码格式(以接收代码为准,接收代码与发射代码反向)
①位定义
②单发代码格式
③连发代码格式
注:代码宽度算法:
16位地址码的最短宽度:1.12×16=18ms 16位地址码的最长宽度:2.24ms×16=36ms
易知8位数据代码及其8位反代码的宽度和不变:(1.12ms+2.24ms)×8=27ms
所以32位代码的宽度为(18ms+27ms)~(36ms+27ms)
1. 解码的关键是如何识别“0”和“1”,从位的定义我们可以发现“0”、“1”均以0.56ms的低电平开始,不同的是高电平的宽度不同,“0”为0.56ms,“1”为1.68ms,所以必须根据高电平的宽度区别“0”和“1”。如果从0.56ms低电平过后,开始延时,0.56ms以后,若读到的电平为低,说明该位为“0”,反之则为“1”,为了可靠起见,延时必须比0.56ms长些,但又不能超过1.12ms,否则如果该位为“0”,读到的已是下一位的高电平,因此取(1.12ms+0.56ms)/2=0.84ms最为可靠,一般取0.84ms左右均可。
2. 根据码的格式,应该等待9ms的起始码和4.5ms的结果码完成后才能读码。
接收器及解码
一体化红外线接收器是一种集红外线接收和放大于一体,不需要任何外接元件,就能完成从红外线接收到输出与TTL电平信号兼容的所有工作,而体积和普通的塑封三极管大小一样,它适合于各种红外线遥控和红外线数据传输。
下面是一个对51实验板配套的红外线遥控器的解码程序,它可以把上图32键的红外遥控器每一个按键的键值读出来,并且通过实验板上P1口的8个LED显示出来,在解码成功的同时并且能发出“嘀嘀嘀”的提示音。
红外遥控器软件解码原理及程序
红外一开始发送一段13.5ms的引导码,引导码由9ms的高电平和4.5ms的低电平组成,跟着引导码是系统码,系统反码,按键码,按键反码,如果按着键不放,则遥控器则发送一段重复码,重复码由9ms的高电平,2.25ms的低电平,跟着是一个短脉冲,本程序经过试用,能解大部分遥控器的编码!
#include "at89x52.h"
#define NULL 0x00//数据无效
#define RESET 0X01//程序复位
#define REQUEST 0X02//请求信号
#define ACK 0x03//应答信号,在接收数据后发送ACK信号表示数据接收正确,
也位请求信号的应答信号
#define NACK 0x04//应答信号,表示接收数据错误
#define BUSY 0x05//忙信号,表示正在忙
#define FREE 0x06//空闲信号,表示处于空闲状态
#define READ_IR 0x0b//读取红外
#define STORE_IR 0x0c//保存数据
#define READ_KEY 0x0d//读取键值
#define RECEIVE 0Xf400//接收缓冲开始地址
#define SEND 0xfa00//发送缓冲开始地址
#define IR 0x50//红外接收缓冲开始地址
#define HEAD 0xaa//数据帧头
#define TAIL 0x55//数据帧尾
#define SDA P1_7
#define SCL P1_6
unsigned char xdata *buf1; //接受数据缓冲
unsigned int buf1_length; //接收到的数据实际长度
unsigned char xdata *buf2; //发送数据缓冲
unsigned int buf2_length; //要发送的数据实际长度
bit buf1_flag; //接收标志,1表示接受到一个数据帧,0表示没有接受到数据帧或数据帧为空
bit buf2_flag; //发送标志,1表示需要发送或没发送完毕,0表示没有要发送的数据或发送完毕
unsigned char state1,state2; //用来标志接收字符的状态,state1用来表示接收状态,state2用来表示发送状态
unsigned char data *ir;
union{
unsigned char a[2];
unsigned int b;
unsigned char data *p1[2];
unsigned int data *p2[2];
unsigned char xdata *p3; //红外缓冲的指针
unsigned int xdata *p4;
}p;
//union{ //
// unsigned char a[2]; //
// unsigned int b;
// unsigned char data *p1[2];
// unsigned int data *p2[2];
// unsigned char xdata *p3;
// unsigned int xdata *p4; //地址指针
//}q; //
union{
unsigned char a[2];
unsigned int b;
}count;
union{
unsigned char a[2];
unsigned int b;
}temp;
union{
unsigned char a[4];
unsigned int b[2];
unsigned long c;
}ir_code;
union{
unsigned char a[4];
unsigned int b[2];
unsigned long c;
unsigned char data *p1[4];
unsigned int data *p2[4];
unsigned char xdata *p3[2];
unsigned int xdata *p4[2];
}i;
unsigned char ir_key;
bit ir_flag; //红外接收标志,0为缓冲区空,1为接收成功,2为缓冲溢出
void sub(void);
void delay(void);
void ie_0(void);
void tf_0(void);
void ie_1(void);
void tf_1(void);
void tf_2(void);
void read_ir(void);
void ir_jiema(void);
void ir_init(void);
void ir_exit(void);
void store_ir(void);
void read_key(void);
void reset_iic(void);
unsigned char read_byte_ack_iic(void);
unsigned char read_byte_nack_iic(void);
bit write_byte_iic(unsigned char a);
void send_ack_iic(void);
void send_nack_iic(void);
bit receive_ack_iic(void);
void start_iic(void);
void stop_iic(void);
void write_key_data(unsigned char a);
unsigned int read_key_data(unsigned char a);
void ie0(void) interrupt 0{ie_0();}
void tf0(void) interrupt 1{tf_0();}
void ie1(void) interrupt 2{ie_1();}
void tf1(void) interrupt 3{tf_1();tf_2();}
void tf2(void) interrupt 5{ //采用中断方式跟查询方式相结合的办法解
码
EA=0; //禁止中断
if(TF2){ //判断是否是溢出还是电平变化产生的中断
TF2=0; //如果是溢出产生的中断则清除溢出位,重
新开放中断退出
EA=1;
goto end;
}
EXF2=0; //清除电平变化产生的中断位
*ir=RCAP2H; //把捕捉的数保存起来
ir++;
*ir=RCAP2L;
*ir++;
F0=1;
TR0=1; //开启计数器0
loop:
TL0=0; //将计数器0重新置为零
TH0=0;
while(!EXF2){ //查询等待EXF2变为1
if(TF0)goto exit; //检查有没超时,如果超时则退出
};
EXF2=0; //将EXF2清零
if(!TH0) //判断是否是长低电平脉冲过来了
{ //不是长低电平脉冲而是短低电平
if(F0)count.b++; //短脉冲数加一
temp.a[0]=RCAP2H; //将捕捉数临时存放起来
temp.a[1]=RCAP2L;
goto loop; //返回继续查询
}
else{ //是低电平脉冲,则进行处理
F0=0;
*ir=temp.a[0]; //把连续的短脉冲总时间记录下来
ir++;
*ir=temp.a[1];
ir++;
*ir=RCAP2H; //把长电平脉冲时间记录下来
ir++;
*ir=RCAP2L;
ir++;
if(ir>=0xda) {
goto exit; //判断是否溢出缓冲,如果溢出则失败退出
}
goto loop; //返回继续查询
}
exit:
ir_flag=1; //置ir_flag为1表示接收成功
end:
;
}
void rs232(void) interrupt 4{
static unsigned char sbuf1,sbuf2,rsbuf1,rsbuf2; //sbuf1,sbuf2用来接收发送临时用,rsbuf1,rsbuf2用来分别用来存放接收发送的半字节
EA=0; //禁止中断
if(RI){
RI=0; //清除接收中断标志位
sbuf1=SBUF; //将接收缓冲的字符复制到sbuf1
if(sbuf1==HEAD){ //判断是否帧开头
state1=10; //是则把state赋值为10
buf1=RECEIVE; //初始化接收地
址
}
else{
switch(state1){
case 10:sbuf2=sbuf1>>4; //把高半字节右移到的半字节
sbuf2=~sbuf2; //把低半字节取反
if((sbuf2&0x0f)!=(sbuf1&0x0f)) //判断接收是否正确
{ //接收错误,有可能接收的是数据帧尾,也有可能是接收错误
if(sbuf1==TAIL) //判断是否接收到数据帧尾
{ //是接收到数据帧尾
buf1=RECEIVE; //初始化接收的地址
if(*buf1==RESET) //判断是否为复位命令
{
ES=0;
sbuf2=SP+1;
for(p.p1[0]=SP-0x10;p.p1[0]<=sbuf2;p.p1
[0]++)*p.p1[0]=0;
}
state1=0; //将接收状态标志置为零,接收下一个数据帧
buf1_flag=1; //置接收标志为1,表示已经接收到一个数据帧
REN=0; //禁止接收
}
else
{ //不是接受到数据帧尾,表明接收错误
state1=0; // 将接收状态标志置为零,重新接收
buf1=RECEIVE; //初始化发送的地址
*buf1=NACK; //把NACK信号存入接收缓冲里
buf1_flag=1; //置标志位为1,使主程序能对接收错误进行处理
REN=0; //禁止接收
}
}
else
{ //接收正确
rsbuf1=~sbuf1; //按位取反,使高半字节变原码
rsbuf1&=0xf0; //仅保留高半字节,低半字节去掉
state1=20; //将状态标志置为20,准备接收低半字节
}
break;
case 20:sbuf2=sbuf1>>4; //把高半字节右移到的半字节
sbuf2=~sbuf2; //将低半字节取反
if((sbuf2&0x0f)!=(sbuf1&0x0f)) //判断接收是否正确
{ //接受错误
state1=0; // 将接收状态标志置为零,重新接收
buf1=RECEIVE; //初始化接收的地址
*buf1=NACK; //把NACK信号存入发送缓冲里
buf1_flag=1; //置标志位为1,使主程序能对接收错误进行处理
REN=0; //禁止接收
}
else
{
sbuf1&=0x0f; //仅保留低半字节,去掉高半字节
rsbuf1|=sbuf1; //高低半字节合并
*buf1++=rsbuf1; //将接收的数据保存至接收缓冲里,并且数据指针加一
buf1_length++; //接收数据长度加一
state1=10; //将state1置为10,准备接收下个字节的高半字节
}
break;
}
}
}
else{
TI=0; //清除发送中断标志
if(buf2_length) //判断发送长度是否为零
{ //发送长度不为零
if(state2==0) //判断是否发送高半字节
{ //发送高半字节
sbuf2=*buf2; //将要发送的字节送到sbuf2
rsbuf2=~sbuf2; //取反,使高半字节变为反码
sbuf2>>=4; //将高半字节右移到低半字节
rsbuf2&=0xf0; //保留高半字节,去掉低半字节
sbuf2&=0x0f; //保留低半字节,去掉高半字节
rsbuf2|=sbuf2; //合并高低半字节
SBUF=rsbuf2; //发送出去
state2=10; //将state2置为10准备发送下半字节
}
else
{ //发送低半字节
sbuf2=*buf2; //将要发送的字节送到sbuf2
buf2++; //指针加一
buf2_length--; //发送数据长度减一
rsbuf2=~sbuf2; //取反,使低半字节变为反码
rsbuf2<<=4; //将低半字节反码左移到高半字节
rsbuf2&=0xf0; //保留高半字节,去掉低半字节
sbuf2&=0x0f; //保留低半字节,去掉高半字节
rsbuf2|=sbuf2; //合并高低半字节
SBUF=rsbuf2; //发送出
state2=0;
}
}
else
{ //如果发送数据长度为零则发送数据帧尾
if(buf2_flag){ //判断是否发过数据帧尾
SBUF=TAIL; //将数据帧尾发送出去
while(TI==0);
TI=0;
buf2_flag=0; //置发送标志为零,表示发送完毕
}
}
}
EA=1; //开放中断
}
机器人基地推出的此款产品:
红外线遥控器解码原理
IR Receiver Module是一款Arduino兼容的38KHz红外线接收模块,可接收标准38KHz调制的遥控器信号,通过对Arduino进行编程,即可实现对遥控器信号的解码操作。可使用Arduino制作一款带学习功能的万能遥控器。
红外线遥控器解码原理
红外线遥控器解码原理
1.CR2025环保纽扣电池,容量160mah
2.发射距离:8m以上(具体和周围环境、接收端的灵敏度等因素有关)
3.有效角度:60度
4.面贴材料:0.125mmPET,有效寿命2万次。
5.品质稳定,性价比高
6.静态电流3-5uA,动态电流3-5mA。
产品说明书预览:
红外线遥控器解码原理
红外线遥控器解码原理
红外线遥控器解码原理
红外线遥控器解码原理
OK,介绍完毕~1
红外遥控系统
通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。
2 遥控发射器及其编码
遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:
采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。
上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3所示。
UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。
遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。
当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。
代码格式(以接收代码为准,接收代码与发射代码反向)
①位定义
②单发代码格式
③连发代码格式
注:代码宽度算法:
16位地址码的最短宽度:1.12×16=18ms 16位地址码的最长宽度:2.24ms×16=36ms
易知8位数据代码及其8位反代码的宽度和不变:(1.12ms+2.24ms)×8=27ms
所以32位代码的宽度为(18ms+27ms)~(36ms+27ms)
1. 解码的关键是如何识别“0”和“1”,从位的定义我们可以发现“0”、“1”均以0.56ms的低电平开始,不同的是高电平的宽度不同,“0”为0.56ms,“1”为1.68ms,所以必须根据高电平的宽度区别“0”和“1”。如果从0.56ms低电平过后,开始延时,0.56ms以后,若读到的电平为低,说明该位为“0”,反之则为“1”,为了可靠起见,延时必须比0.56ms长些,但又不能超过1.12ms,否则如果该位为“0”,读到的已是下一位的高电平,因此取(1.12ms+0.56ms)/2=0.84ms最为可靠,一般取0.84ms左右均可。
2. 根据码的格式,应该等待9ms的起始码和4.5ms的结果码完成后才能读码。
接收器及解码
一体化红外线接收器是一种集红外线接收和放大于一体,不需要任何外接元件,就能完成从红外线接收到输出与TTL电平信号兼容的所有工作,而体积和普通的塑封三极管大小一样,它适合于各种红外线遥控和红外线数据传输。
下面是一个对51实验板配套的红外线遥控器的解码程序,它可以把上图32键的红外遥控器每一个按键的键值读出来,并且通过实验板上P1口的8个LED显示出来,在解码成功的同时并且能发出“嘀嘀嘀”的提示音。
红外遥控器软件解码原理及程序 红外一开始发送一段13.5ms的引导码,引导码由9ms的高电平和4.5ms的低电平组成,跟着引导码是系统码,系统反码,按键码,按键反码,如果按着键不放,则遥控器则发送一段重复码,重复码由9ms的高电平,2.25ms的低电平,跟着是一个短脉冲,本程序经过试用,能解大部分遥控器的编码! #include "at89x52.h" #define NULL 0x00//数据无效 #define RESET 0X01//程序复位 #define REQUEST 0X02//请求信号 #define ACK 0x03//应答信号,在接收数据后发送ACK信号表示数据接收正确, 也位请求信号的应答信号 #define NACK 0x04//应答信号,表示接收数据错误 #define BUSY 0x05//忙信号,表示正在忙 #define FREE 0x06//空闲信号,表示处于空闲状态 #define READ_IR 0x0b//读取红外 #define STORE_IR 0x0c//保存数据 #define READ_KEY 0x0d//读取键值 #define RECEIVE 0Xf400//接收缓冲开始地址 #define SEND 0xfa00//发送缓冲开始地址 #define IR 0x50//红外接收缓冲开始地址 #define HEAD 0xaa//数据帧头 #define TAIL 0x55//数据帧尾 #define SDA P1_7 #define SCL P1_6 unsigned char xdata *buf1; //接受数据缓冲 unsigned int buf1_length; //接收到的数据实际长度 unsigned char xdata *buf2; //发送数据缓冲 unsigned int buf2_length; //要发送的数据实际长度 bit buf1_flag; //接收标志,1表示接受到一个数据帧,0表示没有接受到数据帧或数据帧为空 bit buf2_flag; //发送标志,1表示需要发送或没发送完毕,0表示没有要发送的数据或发送完毕 unsigned char state1,state2; //用来标志接收字符的状态,state1用来表示接收状态,state2用来表示发送状态 unsigned char data *ir; union{ unsigned char a[2]; unsigned int b; unsigned char data *p1[2]; unsigned int data *p2[2]; unsigned char xdata *p3; //红外缓冲的指针 unsigned int xdata *p4; }p; //union{ // // unsigned char a[2]; // // unsigned int b; // unsigned char data *p1[2]; // unsigned int data *p2[2]; // unsigned char xdata *p3; // unsigned int xdata *p4; //地址指针 //}q; // union{ unsigned char a[2]; unsigned int b; }count; union{ unsigned char a[2]; unsigned int b; }temp; union{ unsigned char a[4]; unsigned int b[2]; unsigned long c; }ir_code; union{ unsigned char a[4]; unsigned int b[2]; unsigned long c; unsigned char data *p1[4]; unsigned int data *p2[4]; unsigned char xdata *p3[2]; unsigned int xdata *p4[2]; }i; unsigned char ir_key; bit ir_flag; //红外接收标志,0为缓冲区空,1为接收成功,2为缓冲溢出 void sub(void); void delay(void); void ie_0(void); void tf_0(void); void ie_1(void); void tf_1(void); void tf_2(void); void read_ir(void); void ir_jiema(void); void ir_init(void); void ir_exit(void); void store_ir(void); void read_key(void); void reset_iic(void); unsigned char read_byte_ack_iic(void); unsigned char read_byte_nack_iic(void); bit write_byte_iic(unsigned char a); void send_ack_iic(void); void send_nack_iic(void); bit receive_ack_iic(void); void start_iic(void); void stop_iic(void); void write_key_data(unsigned char a); unsigned int read_key_data(unsigned char a); void ie0(void) interrupt 0{ie_0();} void tf0(void) interrupt 1{tf_0();} void ie1(void) interrupt 2{ie_1();} void tf1(void) interrupt 3{tf_1();tf_2();} void tf2(void) interrupt 5{ //采用中断方式跟查询方式相结合的办法解 码 EA=0; //禁止中断 if(TF2){ //判断是否是溢出还是电平变化产生的中断 TF2=0; //如果是溢出产生的中断则清除溢出位,重 新开放中断退出 EA=1; goto end; } EXF2=0; //清除电平变化产生的中断位 *ir=RCAP2H; //把捕捉的数保存起来 ir++; *ir=RCAP2L; *ir++; F0=1; TR0=1; //开启计数器0 loop: TL0=0; //将计数器0重新置为零 TH0=0; while(!EXF2){ //查询等待EXF2变为1 if(TF0)goto exit; //检查有没超时,如果超时则退出 }; EXF2=0; //将EXF2清零 if(!TH0) //判断是否是长低电平脉冲过来了 { //不是长低电平脉冲而是短低电平 if(F0)count.b++; //短脉冲数加一 temp.a[0]=RCAP2H; //将捕捉数临时存放起来 temp.a[1]=RCAP2L; goto loop; //返回继续查询 } else{ //是低电平脉冲,则进行处理 F0=0; *ir=temp.a[0]; //把连续的短脉冲总时间记录下来 ir++; *ir=temp.a[1]; ir++; *ir=RCAP2H; //把长电平脉冲时间记录下来 ir++; *ir=RCAP2L; ir++; if(ir>=0xda) { goto exit; //判断是否溢出缓冲,如果溢出则失败退出 } goto loop; //返回继续查询 } exit: ir_flag=1; //置ir_flag为1表示接收成功 end: ; } void rs232(void) interrupt 4{ static unsigned char sbuf1,sbuf2,rsbuf1,rsbuf2; //sbuf1,sbuf2用来接收发送临时用,rsbuf1,rsbuf2用来分别用来存放接收发送的半字节 EA=0; //禁止中断 if(RI){ RI=0; //清除接收中断标志位 sbuf1=SBUF; //将接收缓冲的字符复制到sbuf1 if(sbuf1==HEAD){ //判断是否帧开头 state1=10; //是则把state赋值为10 buf1=RECEIVE; //初始化接收地 址 } else{ switch(state1){ case 10:sbuf2=sbuf1>>4; //把高半字节右移到的半字节 sbuf2=~sbuf2; //把低半字节取反 if((sbuf2&0x0f)!=(sbuf1&0x0f)) //判断接收是否正确 { //接收错误,有可能接收的是数据帧尾,也有可能是接收错误 if(sbuf1==TAIL) //判断是否接收到数据帧尾 { //是接收到数据帧尾 buf1=RECEIVE; //初始化接收的地址 if(*buf1==RESET) //判断是否为复位命令 { ES=0; sbuf2=SP+1; for(p.p1[0]=SP-0x10;p.p1[0]<=sbuf2;p.p1 [0]++)*p.p1[0]=0; } state1=0; //将接收状态标志置为零,接收下一个数据帧 buf1_flag=1; //置接收标志为1,表示已经接收到一个数据帧 REN=0; //禁止接收 } else { //不是接受到数据帧尾,表明接收错误 state1=0; // 将接收状态标志置为零,重新接收 buf1=RECEIVE; //初始化发送的地址 *buf1=NACK; //把NACK信号存入接收缓冲里 buf1_flag=1; //置标志位为1,使主程序能对接收错误进行处理 REN=0; //禁止接收 } } else { //接收正确 rsbuf1=~sbuf1; //按位取反,使高半字节变原码 rsbuf1&=0xf0; //仅保留高半字节,低半字节去掉 state1=20; //将状态标志置为20,准备接收低半字节 } break; case 20:sbuf2=sbuf1>>4; //把高半字节右移到的半字节 sbuf2=~sbuf2; //将低半字节取反 if((sbuf2&0x0f)!=(sbuf1&0x0f)) //判断接收是否正确 { //接受错误 state1=0; // 将接收状态标志置为零,重新接收 buf1=RECEIVE; //初始化接收的地址 *buf1=NACK; //把NACK信号存入发送缓冲里 buf1_flag=1; //置标志位为1,使主程序能对接收错误进行处理 REN=0; //禁止接收 } else { sbuf1&=0x0f; //仅保留低半字节,去掉高半字节 rsbuf1|=sbuf1; //高低半字节合并 *buf1++=rsbuf1; //将接收的数据保存至接收缓冲里,并且数据指针加一 buf1_length++; //接收数据长度加一 state1=10; //将state1置为10,准备接收下个字节的高半字节 } break; } } } else{ TI=0; //清除发送中断标志 if(buf2_length) //判断发送长度是否为零 { //发送长度不为零 if(state2==0) //判断是否发送高半字节 { //发送高半字节 sbuf2=*buf2; //将要发送的字节送到sbuf2 rsbuf2=~sbuf2; //取反,使高半字节变为反码 sbuf2>>=4; //将高半字节右移到低半字节 rsbuf2&=0xf0; //保留高半字节,去掉低半字节 sbuf2&=0x0f; //保留低半字节,去掉高半字节 rsbuf2|=sbuf2; //合并高低半字节 SBUF=rsbuf2; //发送出去 state2=10; //将state2置为10准备发送下半字节 } else { //发送低半字节 sbuf2=*buf2; //将要发送的字节送到sbuf2 buf2++; //指针加一 buf2_length--; //发送数据长度减一 rsbuf2=~sbuf2; //取反,使低半字节变为反码 rsbuf2<<=4; //将低半字节反码左移到高半字节 rsbuf2&=0xf0; //保留高半字节,去掉低半字节 sbuf2&=0x0f; //保留低半字节,去掉高半字节 rsbuf2|=sbuf2; //合并高低半字节 SBUF=rsbuf2; //发送出 state2=0; } } else { //如果发送数据长度为零则发送数据帧尾 if(buf2_flag){ //判断是否发过数据帧尾 SBUF=TAIL; //将数据帧尾发送出去 while(TI==0); TI=0; buf2_flag=0; //置发送标志为零,表示发送完毕 } } } EA=1; //开放中断 } |
机器人基地推出的此款产品:
IR Receiver Module是一款Arduino兼容的38KHz红外线接收模块,可接收标准38KHz调制的遥控器信号,通过对Arduino进行编程,即可实现对遥控器信号的解码操作。可使用Arduino制作一款带学习功能的万能遥控器。
1.CR2025环保纽扣电池,容量160mah
2.发射距离:8m以上(具体和周围环境、接收端的灵敏度等因素有关)
3.有效角度:60度
4.面贴材料:0.125mmPET,有效寿命2万次。
5.品质稳定,性价比高
6.静态电流3-5uA,动态电流3-5mA。
产品说明书预览:
OK,介绍完毕~