spark中的RDD算子

aggregateByKey   aggregate

scala> def combOp(a :Int, b:Int): Int = {println("combOp:" + a + "\t" + b); a + b }
combOp: (a: Int, b: Int)Int


scala> def seqOP(a : Int, b : Int):Int = {println("seqOp:" + a + "\t" + b); math.min(a, b);}
seqOP: (a: Int, b: Int)Int

scala> val z = sc.parallelize(List(1, 2, 3, 4, 5, 6), 2)
z: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at :24


scala> z.aggregate(3)(seqOP,combOp)
seqOp:3 4
seqOp:3 5
seqOp:3 1
seqOp:3 6
seqOp:1 2
seqOp:1 3
combOp:3        3
combOp:6        1
res42: Int = 7

一共分成两个区,初始值为3,定义的seqOP在每个分区的元素间进行聚合,聚合时候初始值为3,,然后用combine函数将每个分区的结果和初始,3,执行combOp操作

aggregateByKey

aggregateByKey中的初始值只需要和reduce函数计算,不需要和combine函数结合计算,输入值为key-value格式,其他的类似。


,reduceByKey  reduce

reduce(binary_function) 
reduce将RDD中元素前两个传给输入函数,产生一个新的return值,新产生的return值与RDD中下一个元素(第三个元素)组成两个元素,再被传给输入函数,直到最后只有一个值为止。

val c = sc.parallelize(1 to 10)
c.reduce((x, y) => x + y)//结果55
  • 1
  • 2
  • 1
  • 2

具体过程,RDD有1 2 3 4 5 6 7 8 9 10个元素, 
1+2=3 
3+3=6 
6+4=10 
10+5=15 
15+6=21 
21+7=28 
28+8=36 
36+9=45 
45+10=55


reduceByKey(binary_function) 
reduceByKey就是对元素为KV对的RDD中Key相同的元素的Value进行binary_function的reduce操作,因此,Key相同的多个元素的值被reduce为一个值,然后与原RDD中的Key组成一个新的KV对。

val a = sc.parallelize(List((1,2),(1,3),(3,4),(3,6)))
a.reduceByKey((x,y) => x + y).collect
  • 1
  • 2
  • 1
  • 2

//结果 Array((1,5), (3,10))

fold foldByKey

scala> val numbers = List(5, 4, 8, 6, 2)
numbers: List[Int] = List(5, 4, 8, 6, 2)


scala> numbers.fold(0){(z, i) => z + i}
res59: Int = 25


scala> numbers.fold(1){(z, i) => z + i}
res60: Int = 26


fold方法需要输入两个参数:初始值以及一个函数。函数也需要两个参数:累加值和当前的item索引

scala> var rdd1 = sc.makeRDD(Array(("A", 0), ("A", 2), ("B", 1), ("B", 2), ("C", 1)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[45] at makeRDD at :24


scala> rdd1.foldByKey(1)(_+_).collect
res64: Array[(String, Int)] = Array((A,4), (B,5), (C,2))


scala> rdd1.foldByKey(0)(_+_).collect
res65: Array[(String, Int)] = Array((A,2), (B,3), (C,1))

foldByKey按照Key值进行fold




combineByKey

scala> val data = sc.parallelize(List((1, "www"), (1, "iteblog"), (2, "bbs"), (2, "iteblog"), (2, "com"),(3, "good")))
data: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[48] at parallelize at :24


scala> val result = data.combineByKey(List(_), (x:List[String], y:String) => y :: x, (x: List[String], y : List[String])=> x:::y)
result: org.apache.spark.rdd.RDD[(Int, List[String])] = ShuffledRDD[49] at combineByKey at :26


scala> result.collect
res66: Array[(Int, List[String])] = Array((1,List(www, iteblog)), (2,List(bbs, iteblog, com)), (3,List(good)))

对每个相同的key的value执行combine操作。


你可能感兴趣的:(实习)