题面
题解
调了好几个小时啊……话说我考试的时候脑子里到底在想啥……
首先,这个数列肯定是有循环节的,而且循环节的长度\(T\)不会超过\(D\)
那么就可以把数列分成三份,\(L+S+R\),其中\(L,R\)为左右两边剩下的,\(S\)为中间的循环数列。对于\(L\),算出\(pre_i\)表示最后一个数小于等于\(i\)的最长的子序列的长度,对于\(R\)算出\(suf_i\)表示最开始的一个数大于等于\(i\)的最长的子序列的长度。然后用中间出现过的每一个数以及\(pre\)和\(suf\)更新答案就好了
然后中间的部分要怎么计算呢?
通过观察可以发现,设中间的\(LIS\)长度为\(len\),那么这个\(LIS\)最多只有\(L-1\)对两两不一样的。而且如果这个数列是长成\(xu+F+v\)的形式,就是\(x\)个\(u\)加上一串\(F\)加上一个\(v\),那么它也可以变成\(u+F+xv\)的形式,也就是说相等的数字无论与谁相等都是不会影响结果的
那么我们考虑把从\(S\)中选取的\(LIS\)分成三部分\(LL+k\times SS+RR\),其中\(k\times SS\)就是那段相等的部分。又因为每个周期中至少选择一个数,所以\(LL\)和\(RR\)最多包含\(T\)个周期,那么长度不会超过\(T^2\),用和之前算\(L\)和\(R\)一样的方法计算就行了
//minamoto
#include
#define R register
#define ll long long
#define inf 0x3f3f3f3f
#define fp(i,a,b) for(R int i=a,I=b+1;iI;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
templateinline bool cmax(T&a,const T&b){return a=l&&x<=r;}
void qwq(){
for(p=1;!pos[t];t=(A*t*t+B*t+C)%D,++p)v[p]=t,pos[t]=p;
sz=p-pos[t],k=(n-p+1)/sz+1;
fp(fff,1,sz-1)for(R int i=1;i<=sz;++i,t=(A*t*t+B*t+C)%D,++p)v[p]=t;
--p,len=0,b[0]=-inf;
fp(i,1,p){
if(v[i]>=b[len])b[++len]=v[i],cmax(Pre[v[i]],len);
else{
int g=upper_bound(b+1,b+1+len,v[i])-b;
b[g]=v[i],cmax(Pre[v[i]],g);
}
}
p=1,h=t;
fp(fff,1,sz)for(R int i=1;i<=sz;++i,t=(A*t*t+B*t+C)%D,++p)v[p]=-t;
for(R int i=1,j=(n-pos[t]+1)%sz;i<=j;++i,++p,h=(A*h*h+B*h+C)%D)v[p]=-h;
--p,len=0;
reverse(v+1,v+p+1),b[0]=-inf;
fp(i,1,p){
if(v[i]>=b[len])b[++len]=v[i],cmax(suf[-v[i]],len);
else{
int g=upper_bound(b+1,b+1+len,v[i])-b;
b[g]=v[i],cmax(suf[-v[i]],g);
}
}
k-=sz+sz;
fp(i,1,D-1)cmax(Pre[i],Pre[i-1]);
fd(i,D-2,0)cmax(suf[i],suf[i+1]);
h=(A*t*t+B*t+C)%D;
for(;h!=t;h=(A*h*h+B*h+C)%D)cmax(res,k+Pre[h]+suf[h]);
cmax(res,k+Pre[t]+suf[t]);
printf("%lld\n",res);
}
int main(){
// freopen("testdata.in","r",stdin);
freopen("lis.in","r",stdin);
freopen("lis.out","w",stdout);
scanf("%lld%d%d%d%d%d",&n,&t,&A,&B,&C,&D);
if(n<=D*D*2+D+D+D){
b[0]=-inf;
fp(i,1,n){
if(t>=b[len])b[++len]=t,dp[i]=len;
else{
int k=upper_bound(b+1,b+1+len,t)-b;
b[k]=t,dp[i]=k;
}
t=(A*t*t+B*t+C)%D;
}printf("%d\n",len);
}else qwq();
return 0;
}