基于Android 7.0源码,分析system_server进程的启动过程。
在文章《Android系统启动——Zygote进程》中讲到,Zygote启动过程中会调用startSystemServer()启动system_server进程。SystemServer是由Zygote fork生成的,进程名为system_server,该进程承载着framework的核心服务。
下面从startSystemServer()开始讲解详细启动流程。
ZygoteInit.startSystemServer
Zygote.forkSystemServer
Zygote.nativeForkSystemServer
com_android_internal_os_Zygote_nativeForkSystemServer //com_android_internal_os_Zygote_nativeForkSystemServer.cpp文件中
ForkAndSpecializeCommon //com_android_internal_os_Zygote_nativeForkSystemServer.cpp文件中
------------------------------------------------------------
该分界线上方处于zygote进程 下方则运行在system_server进程
------------------------------------------------------------
ZygoteInit.handleSystemServerProcess
ZygoteInit.performSystemServerDexOpt
RuntimeInit.zygoteInit
RuntimeInit.commonInit()
RuntimeInit.nativeZygoteInit()
RuntimeInit.applicationInit
RuntimeInit.invokeStaticMain
SystemServer.main
[===>frameworks\base\core\java\com\android\internal\os\ZygoteInit.java]
/**
* Prepare the arguments and fork for the system server process.
*/
private static boolean startSystemServer(String abiList, String socketName)
throws MethodAndArgsCaller, RuntimeException {
long capabilities = posixCapabilitiesAsBits(
OsConstants.CAP_IPC_LOCK,
OsConstants.CAP_KILL,
OsConstants.CAP_NET_ADMIN,
OsConstants.CAP_NET_BIND_SERVICE,
OsConstants.CAP_NET_BROADCAST,
OsConstants.CAP_NET_RAW,
OsConstants.CAP_SYS_MODULE,
OsConstants.CAP_SYS_NICE,
OsConstants.CAP_SYS_RESOURCE,
OsConstants.CAP_SYS_TIME,
OsConstants.CAP_SYS_TTY_CONFIG
);
/* Containers run without this capability, so avoid setting it in that case */
if (!SystemProperties.getBoolean(PROPERTY_RUNNING_IN_CONTAINER, false)) {
capabilities |= posixCapabilitiesAsBits(OsConstants.CAP_BLOCK_SUSPEND);
}
/* Hardcoded command line to start the system server */
String args[] = {
"--setuid=1000",
"--setgid=1000",
"--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1032,3001,3002,3003,3006,3007,3009,3010",
"--capabilities=" + capabilities + "," + capabilities,
"--nice-name=system_server",
"--runtime-args",
"com.android.server.SystemServer",
};
ZygoteConnection.Arguments parsedArgs = null;
int pid;
try {
parsedArgs = new ZygoteConnection.Arguments(args);
ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);
/* Request to fork the system server process */
pid = Zygote.forkSystemServer(
parsedArgs.uid, parsedArgs.gid,
parsedArgs.gids,
parsedArgs.debugFlags,
null,
parsedArgs.permittedCapabilities,
parsedArgs.effectiveCapabilities);//对zygote进程进行fork,得到的子进程就是SystemServer进程,返回的子进程pid为0
} catch (IllegalArgumentException ex) {
throw new RuntimeException(ex);
}
/* For child process */
if (pid == 0) {//子进程ystem_server进程pid为0,此时位于system_server进程中
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
handleSystemServerProcess(parsedArgs);
}
return true;
}
[===>frameworks\base\core\java\com\android\internal\os\Zygote.java]
/**
* Special method to start the system server process. In addition to the
* common actions performed in forkAndSpecialize, the pid of the child
* process is recorded such that the death of the child process will cause
* zygote to exit.
*
* @param uid the UNIX uid that the new process should setuid() to after
* fork()ing and and before spawning any threads.
* @param gid the UNIX gid that the new process should setgid() to after
* fork()ing and and before spawning any threads.
* @param gids null-ok; a list of UNIX gids that the new process should
* setgroups() to after fork and before spawning any threads.
* @param debugFlags bit flags that enable debugging features.
* @param rlimits null-ok an array of rlimit tuples, with the second
* dimension having a length of 3 and representing
* (resource, rlim_cur, rlim_max). These are set via the posix
* setrlimit(2) call.
* @param permittedCapabilities argument for setcap()
* @param effectiveCapabilities argument for setcap()
*
* @return 0 if this is the child, pid of the child
* if this is the parent, or -1 on error.
*/
public static int forkSystemServer(int uid, int gid, int[] gids, int debugFlags,
int[][] rlimits, long permittedCapabilities, long effectiveCapabilities) {
VM_HOOKS.preFork();
int pid = nativeForkSystemServer(//调用native方法nativeForkSystemServer来fork system_server进程
uid, gid, gids, debugFlags, rlimits, permittedCapabilities, effectiveCapabilities);
// Enable tracing as soon as we enter the system_server.
if (pid == 0) {
Trace.setTracingEnabled(true);
}
VM_HOOKS.postForkCommon();
return pid;
}
还记不记得文章《Android系统启动——Zygote进程》中在执行AndroidRuntime.start函数时startVm创建虚拟机后又startReg对jni函数进行了注册?
那么nativeForkSystemServer()这个native方法就是在这个过程中注册的,然后调用com_android_internal_os_Zygote.cpp中的register_com_android_internal_os_Zygote()方法完成nativeForkSystemServer()与com_android_internal_os_Zygote_nativeForkSystemServer()方法的一一映射关系,也就是会进入下面的方法。
[===>frameworks\base\core\jni\com_android_internal_os_Zygote.cpp]
static jint com_android_internal_os_Zygote_nativeForkSystemServer(
JNIEnv* env, jclass, uid_t uid, gid_t gid, jintArray gids,
jint debug_flags, jobjectArray rlimits, jlong permittedCapabilities,
jlong effectiveCapabilities) {
pid_t pid = ForkAndSpecializeCommon(env, uid, gid, gids,
debug_flags, rlimits,
permittedCapabilities, effectiveCapabilities,
MOUNT_EXTERNAL_DEFAULT, NULL, NULL, true, NULL,
NULL, NULL);//在zygote进程中,返回的是system_server进程的pid
if (pid > 0) {//zygote进程处理
// The zygote process checks whether the child process has died or not.
ALOGI("System server process %d has been created", pid);
gSystemServerPid = pid;
// There is a slight window that the system server process has crashed
// but it went unnoticed because we haven't published its pid yet. So
// we recheck here just to make sure that all is well.
int status;
if (waitpid(pid, &status, WNOHANG) == pid) {//等待进程id为pid的进程死亡,这里就是等待system_server进程死亡
ALOGE("System server process %d has died. Restarting Zygote!", pid);
RuntimeAbort(env, __LINE__, "System server process has died. Restarting Zygote!");//重启zygote进程
}
}
return pid;
}
当system_server进程死亡了,会重启zygote进程。
在文章《Android系统启动——Zygote进程》的开始我们讲到属性ro.zygote,这个属性目前可能有四个不同的值:
ro.zygote值 | init.rc文件名 |
---|---|
zygote32 | init.zygote32.rc |
zygote64 | init.zygote64.rc |
zygote32_64 | init.zygote32_64.rc |
zygote64_32 | init.zygote64_32.rc |
在文章《Android系统启动——Zygote进程》我们只是分析了init.zygote32.rc的情况,init.zygote64.rc与之类似。
但是自从Android 5.0就开始支持了64bit程序,因此系统启动时会生成两个zygote进程:zygote与zygote64。这里我就以ro.zygote=zygote64_32为例,先来看看init.zygote64_32.rc文件。
# zygote64进程 fork出system_server,system_server死亡后只会重启zygote64
service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
class main
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart audioserver
onrestart restart cameraserver
onrestart restart media
onrestart restart netd
writepid /dev/cpuset/foreground/tasks /sys/fs/cgroup/stune/foreground/tasks
# zygote进程
service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary
class main
socket zygote_secondary stream 660 root system
onrestart restart zygote #zygote32进程挂掉,则system_server、zygote和zygote64进程都会重启
writepid /dev/cpuset/foreground/tasks /dev/stune/foreground/tasks
在\frameworks\base\cmds\app_process中会生成两个bin文件app_process64和app_process32。在上面的这个情况下,可以先做出推断:
- kill system_server进程,只会重启zygote64进程和system_server进程
- kill zygote64进程,只会重启zygote64进程和system_server进程
- kill zygote进程,zygote、zygote64和system_server进程都会重启
好了,推断做了,来看看实际情况如何,选用了一台运行Android6.0.1系统的手机,ro.zygote属性值为zygote64_32,如下:
正常状态下,其zygote、zygote64和system_server进程的状态如下(省略了其他进程,下同):
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 2100 1388 SyS_epoll_ 00004b0ad8 S /init
root 533 1 2094300 76112 poll_sched 7f9d399cc4 S zygote64
root 534 1 1525140 64556 poll_sched 00f6f3ae3c S zygote
system 1430 533 2358700 170720 SyS_epoll_ 7f9d399ba4 S system_server
在adb shell后,输入”kill 1430”,杀system_server进程过后,system_server和zygote64的pid变化了,表示它俩system_server和zygote64进程都重启了:
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 2100 1392 SyS_epoll_ 00004b0ad8 S /init
root 534 1 1525140 64716 poll_sched 00f6f3ae3c S zygote
root 17326 1 2094316 75972 poll_sched 7f79aaacc4 S zygote64
system 17574 17326 2288376 118804 SyS_epoll_ 7f79aaaba4 S system_server
紧接着输入”kill 17326”,杀zygote64进程过后,system_server和zygote64的pid又变化了,表示它俩system_server和zygote64进程都重启了:
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 2100 1392 SyS_epoll_ 00004b0ad8 S /init
root 534 1 1525140 64872 poll_sched 00f6f3ae3c S zygote
root 19820 1 2094312 76016 poll_sched 7f89f0bcc4 S zygote64
system 20129 19820 2308512 121012 SyS_epoll_ 7f89f0bba4 S system_server
紧接着输入”kill 534”,杀zygote进程过后,system_server、zygote和zygote64进程的pid都变化了,表示system_server、zygote和zygote64进程都重启了:
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 2100 1392 SyS_epoll_ 00004b0ad8 S /init
root 22286 1 1525144 64432 poll_sched 00f6f29e3c S zygote
root 22287 1 2094320 75980 poll_sched 7fb76fdcc4 S zygote64
system 22590 22287 2287100 119392 SyS_epoll_ 7fb76fdba4 S system_server
事实证明,之前的三个推断是正确的。
好了,回来继续看system_server进程的fork过程,看看ForkAndSpecializeCommon函数。
[===>frameworks\base\core\jni\com_android_internal_os_Zygote.cpp]
// Utility routine to fork zygote and specialize the child process.
static pid_t ForkAndSpecializeCommon(JNIEnv* env, uid_t uid, gid_t gid, jintArray javaGids,
jint debug_flags, jobjectArray javaRlimits,
jlong permittedCapabilities, jlong effectiveCapabilities,
jint mount_external,
jstring java_se_info, jstring java_se_name,
bool is_system_server, jintArray fdsToClose,
jstring instructionSet, jstring dataDir) {
SetSigChldHandler();
...
pid_t pid = fork();
if (pid == 0) {//system_server进程
// The child process.
gMallocLeakZygoteChild = 1;
...
// Make it easier to debug audit logs by setting the main thread's name to the
// nice name rather than "app_process".
if (se_info_c_str == NULL && is_system_server) {
se_name_c_str = "system_server";
}
if (se_info_c_str != NULL) {
SetThreadName(se_name_c_str);//设置进程名为system_server,方便debug
}
...
} else if (pid > 0) {//zygote进程
// the parent process
...
}
return pid;
}
fork()创建新进程时,会有两次return,对于pid==0为子进程的返回,对于pid>0为父进程的返回。 到此,system_server进程已完成了创建的所有工作,接下来开始了system_server进程的真正工作。在前面startSystemServer()方法中,zygote进程执行完forkSystemServer()后,新创建出来的system_server进程便进入handleSystemServerProcess()方法。至于fork()的过程,后面再专门写一篇文章吧。
[===>frameworks\base\core\java\com\android\internal\os\ZygoteInit.java]
/**
* Finish remaining work for the newly forked system server process.
*/
private static void handleSystemServerProcess(
ZygoteConnection.Arguments parsedArgs)
throws ZygoteInit.MethodAndArgsCaller {
closeServerSocket();//在fork过程中复制了原来位于zygote进程的socket服务端,这里关闭从父进程zygote复制而来的Socket
// set umask to 0077 so new files and directories will default to owner-only permissions.
Os.umask(S_IRWXG | S_IRWXO);
if (parsedArgs.niceName != null) {
Process.setArgV0(parsedArgs.niceName);//设置当前进程名为“system_server”
}
final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");//获取环境变量SYSTEMSERVERCLASSPATH,环境变量位于init.environ.rc中
if (systemServerClasspath != null) {
performSystemServerDexOpt(systemServerClasspath);//对环境变量SYSTEMSERVERCLASSPATH中的jar包进行dex优化
}
if (parsedArgs.invokeWith != null) {//zygote的启动参数未包含“--invoke-with”,故本条件不成立
...
WrapperInit.execApplication(parsedArgs.invokeWith,
parsedArgs.niceName, parsedArgs.targetSdkVersion,
VMRuntime.getCurrentInstructionSet(), null, args);
} else {
ClassLoader cl = null;
if (systemServerClasspath != null) {
cl = createSystemServerClassLoader(systemServerClasspath,
parsedArgs.targetSdkVersion);
Thread.currentThread().setContextClassLoader(cl);
}
/*
* Pass the remaining arguments to SystemServer.
*/
RuntimeInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
}
/* should never reach here */
}
Android中的环境变量是由init进程启动过程中读取/system/core/rootdir/init.environ.rc.in文件设置的,具体过程请参考《Android系统启动——init进程》。
环境变量SYSTEMSERVERCLASSPATH是由PRODUCT_SYSTEM_SERVER_CLASSPATH变量指定:
# system/core/rootdir/Android.mk文件中
# Regenerate init.environ.rc if PRODUCT_BOOTCLASSPATH has changed.
bcp_md5 := $(word 1, $(shell echo $(PRODUCT_BOOTCLASSPATH) $(PRODUCT_SYSTEM_SERVER_CLASSPATH) | $(MD5SUM)))
bcp_dep := $(intermediates)/$(bcp_md5).bcp.dep
$(bcp_dep) :
$(hide) mkdir -p $(dir $@) && rm -rf $(dir $@)*.bcp.dep && touch $@
$(LOCAL_BUILT_MODULE): $(LOCAL_PATH)/init.environ.rc.in $(bcp_dep)
@echo "Generate: $< -> $@"
@mkdir -p $(dir $@)
$(hide) sed -e 's?%BOOTCLASSPATH%?$(PRODUCT_BOOTCLASSPATH)?g' $< >$@
$(hide) sed -i -e 's?%SYSTEMSERVERCLASSPATH%?$(PRODUCT_SYSTEM_SERVER_CLASSPATH)?g' $@
$(hide) sed -i -e 's?%EXPORT_GLOBAL_ASAN_OPTIONS%?$(EXPORT_GLOBAL_ASAN_OPTIONS)?g' $@
而PRODUCT_SYSTEM_SERVER_CLASSPATH由PRODUCT_SYSTEM_SERVER_JARS决定:
# build/core/dex_preopt.mk文件中
PRODUCT_SYSTEM_SERVER_CLASSPATH := $(subst $(space),:,$(foreach m,$(PRODUCT_SYSTEM_SERVER_JARS),/system/framework/$(m).jar))
PRODUCT_SYSTEM_SERVER_JARS变量的值可以根据具体产品的需要进行增减。
OK,在获取到环境变量SYSTEMSERVERCLASSPATH指定的jar包们后,就要对这些jar包进行dex优化了。
[===>frameworks/base/core/java/com/android/internal/os/ZygoteInit.java]
/**
* Performs dex-opt on the elements of {@code classPath}, if needed. We
* choose the instruction set of the current runtime.
*/
private static void performSystemServerDexOpt(String classPath) {
final String[] classPathElements = classPath.split(":");
final InstallerConnection installer = new InstallerConnection();
installer.waitForConnection();
final String instructionSet = VMRuntime.getRuntime().vmInstructionSet();
try {
String sharedLibraries = "";
for (String classPathElement : classPathElements) {
// System server is fully AOTed and never profiled
// for profile guided compilation.
// TODO: Make this configurable between INTERPRET_ONLY, SPEED, SPACE and EVERYTHING?
final int dexoptNeeded = DexFile.getDexOptNeeded(
classPathElement, instructionSet, "speed",
false /* newProfile */);
if (dexoptNeeded != DexFile.NO_DEXOPT_NEEDED) {
installer.dexopt(classPathElement, Process.SYSTEM_UID, instructionSet,
dexoptNeeded, 0 /*dexFlags*/, "speed", null /*volumeUuid*/,
sharedLibraries);
}
if (!sharedLibraries.isEmpty()) {
sharedLibraries += ":";
}
sharedLibraries += classPathElement;
}
} catch (IOException | InstallerException e) {
throw new RuntimeException("Error starting system_server", e);
} finally {
installer.disconnect();
}
}
在对环境变量SYSTEMSERVERCLASSPATH指定的jar包进行dex优化后,就执行RuntimeInit.zygoteInit了。
[===>frameworks/base/core/java/com/android/internal/os/RuntimeInit.java]
public static final void zygoteInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting application from zygote");
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "RuntimeInit");
redirectLogStreams();//日志重定向
commonInit();//通用的初始化工作
nativeZygoteInit();//zygote初始化
applicationInit(targetSdkVersion, argv, classLoader);//应用的初始化工作
}
[===>frameworks/base/core/java/com/android/internal/os/RuntimeInit.java]
private static final void commonInit() {
if (DEBUG) Slog.d(TAG, "Entered RuntimeInit!");
/* set default handler; this applies to all threads in the VM */
Thread.setDefaultUncaughtExceptionHandler(new UncaughtHandler());// 设置默认的未捕捉异常处理方法
/*
* Install a TimezoneGetter subclass for ZoneInfo.db
*/
TimezoneGetter.setInstance(new TimezoneGetter() {
@Override
public String getId() {
return SystemProperties.get("persist.sys.timezone");
}
});
TimeZone.setDefault(null);//设置默认时区
/*
* Sets handler for java.util.logging to use Android log facilities.
* The odd "new instance-and-then-throw-away" is a mirror of how
* the "java.util.logging.config.class" system property works. We
* can't use the system property here since the logger has almost
* certainly already been initialized.
*/
LogManager.getLogManager().reset();
new AndroidConfig();
/*
* Sets the default HTTP User-Agent used by HttpURLConnection.
*/
String userAgent = getDefaultUserAgent();
System.setProperty("http.agent", userAgent);//设置默认的HTTP User-agent
/*
* Wire socket tagging to traffic stats.
*/
NetworkManagementSocketTagger.install();
/*
* If we're running in an emulator launched with "-trace", put the
* VM into emulator trace profiling mode so that the user can hit
* F9/F10 at any time to capture traces. This has performance
* consequences, so it's not something you want to do always.
*/
String trace = SystemProperties.get("ro.kernel.android.tracing");
if (trace.equals("1")) {
Slog.i(TAG, "NOTE: emulator trace profiling enabled");
Debug.enableEmulatorTraceOutput();
}
initialized = true;
}
[===>frameworks/base/core/jni/AndroidRuntime.cpp]
static void com_android_internal_os_RuntimeInit_nativeZygoteInit(JNIEnv* env, jobject clazz)
{
gCurRuntime->onZygoteInit();
}
[===>frameworks/base/core/java/com/android/internal/os/RuntimeInit.java]
private static void applicationInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
// If the application calls System.exit(), terminate the process
// immediately without running any shutdown hooks. It is not possible to
// shutdown an Android application gracefully. Among other things, the
// Android runtime shutdown hooks close the Binder driver, which can cause
// leftover running threads to crash before the process actually exits.
nativeSetExitWithoutCleanup(true);
// We want to be fairly aggressive about heap utilization, to avoid
// holding on to a lot of memory that isn't needed.
VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);
final Arguments args;
try {
args = new Arguments(argv);
} catch (IllegalArgumentException ex) {
Slog.e(TAG, ex.getMessage());
// let the process exit
return;
}
// The end of of the RuntimeInit event (see #zygoteInit).
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
// Remaining arguments are passed to the start class's static main
invokeStaticMain(args.startClass, args.startArgs, classLoader);//调用startClass的static方法 main(),此处args.startClass为“com.android.server.SystemServer”
}
[===>frameworks/base/core/java/com/android/internal/os/RuntimeInit.java]
private static void invokeStaticMain(String className, String[] argv, ClassLoader classLoader)
throws ZygoteInit.MethodAndArgsCaller {
Class> cl;
try {
cl = Class.forName(className, true, classLoader);
} catch (ClassNotFoundException ex) {
throw new RuntimeException(
"Missing class when invoking static main " + className,
ex);
}
Method m;
try {
m = cl.getMethod("main", new Class[] { String[].class });
} catch (NoSuchMethodException ex) {
throw new RuntimeException(
"Missing static main on " + className, ex);
} catch (SecurityException ex) {
throw new RuntimeException(
"Problem getting static main on " + className, ex);
}
int modifiers = m.getModifiers();
if (! (Modifier.isStatic(modifiers) && Modifier.isPublic(modifiers))) {
throw new RuntimeException(
"Main method is not public and static on " + className);
}
/*
* This throw gets caught in ZygoteInit.main(), which responds
* by invoking the exception's run() method. This arrangement
* clears up all the stack frames that were required in setting
* up the process.
*/
throw new ZygoteInit.MethodAndArgsCaller(m, argv);//此时,m描述的是SystemServer类的main函数
}
这里以Class.forName的方式获取到SystemServer类及其main函数。
注意该函数最后一句抛出异常的语句,根据注释,这个ZygoteInit.MethodAndArgsCaller的“异常”会被ZygoteInit.main()捕获,并且会触发执行异常类的run方法。
那么就回过头来看看ZygoteInit.main()函数的代码呗。
public static void main(String argv[]) {
...
try {
...
} catch (MethodAndArgsCaller caller) {
caller.run();
} catch (RuntimeException ex) {
...
}
}
哦哦哦,这里RuntimeInit.applicationInit有抛出ZygoteInit.MethodAndArgsCaller“异常”,然后在ZygoteInit.main()中进行捕获,不过需要注意的是由于在执行handleSystemServerProcess开始就处于system_server进程了,因此捕获ZygoteInit.MethodAndArgsCaller“异常”的进程是system_server进程,捕获后就会调用MethodAndArgsCaller.run。
[===>frameworks/base/core/java/com/android/internal/os/ZygoteInit.java]
public static class MethodAndArgsCaller extends Exception
implements Runnable {
/** method to call */
private final Method mMethod;
/** argument array */
private final String[] mArgs;
public MethodAndArgsCaller(Method method, String[] args) {
mMethod = method;//此时,method描述的是SystemServer类的main函数
mArgs = args;
}
public void run() {
try {
mMethod.invoke(null, new Object[] { mArgs });//调用SystemServer.main函数
} catch (IllegalAccessException ex) {
throw new RuntimeException(ex);
} catch (InvocationTargetException ex) {
...
}
}
}
终于,zygote启动system_server进程的流程已经一步步的简要分析完了,后面就是通过反射机制进入到SystemServer.main中,进行类似与初始化的工作内容了,这个篇幅放到下篇文章《Android系统启动——SystemServer进程初始化》中了。