Spring Data Elasticsearch实用小demo

Spring Data Elasticsearch

  1. 概念 : 是Spring Data项目下的一个子模块,通过封装原始操作es的方法,从而简化开发人员的代码,提高开发效率。

入门前的准备工作

  1. 新建maven工程es-demo
    Spring Data Elasticsearch实用小demo_第1张图片

  2. 导入依赖

     <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.0.6.RELEASE</version>
        <relativePath/>
    </parent>
    
    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <java.version>1.8</java.version>
    </properties>
    
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.16.18</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>
    
  3. application.yml文件配置

    spring:
      data:
        elasticsearch:
          cluster-name: elasticsearch
          cluster-nodes: 192.168.0.155:9300
    
  4. 创建启动类

    @SpringBootApplication
    public class ESApplication {
        public static void main(String[] args) {
            SpringApplication.run(ESApplication.class,args);
        }
    }
    
  5. 模型类

    @AllArgsConstructor
    @NoArgsConstructor
    @Data
    @Document(indexName = "item", type = "docs", shards = 1, replicas = 1)
    public class Item implements Serializable {
    
        @Id
        private Long id;
    
        @Field(type = FieldType.Text, analyzer = "ik_max_word")
        private String title; //标题
    
        @Field(type = FieldType.Keyword)
        private String category;// 分类
    
        @Field(type = FieldType.Keyword)
        private String brand; // 品牌
    
        @Field(type = FieldType.Double)
        private Double price; // 价格
    
        @Field(type = FieldType.Keyword,index = false)
        private String images; // 图片地址
    }
    
    
    • @Document 作用在类,标记实体类为文档对象,一般有两个属性
      1. indexName:对应索引库名称
      2. type:对应在索引库中的类型
    1. shards:分片数量,默认5
    2. replicas:副本数量,默认1
    3. @Id 作用在成员变量,标记一个字段作为id主键
    4. @Field 作用在成员变量,标记为文档的字段,并指定字段映射属性:
      1. type:字段类型,取值是枚举:FieldType
      2. index:是否索引,布尔类型,默认是true
      3. store:是否存储,布尔类型,默认是false
      4. analyzer:分词器名称( ik_max_wprd或ik_smart )

入门开始

  1. 创建索引和映射

    @RunWith(SpringRunner.class)
    @SpringBootTest
    public class EsTest {
        @Autowired
        private ElasticsearchTemplate elasticsearchTemplate;
    
        /**
         * 测试创建索引和映射
         */
        @Test
        public void addIndexTest(){
            elasticsearchTemplate.createIndex(Item.class);
            elasticsearchTemplate.putMapping(Item.class);
        }
    }
    
    
  2. 删除索引

     @Test
        public void delIndexTest(){
            elasticsearchTemplate.deleteIndex(Item.class);
        }
    
  3. 更简单的文档操作

    1. 定义接口继承

      public interface ItemMapper extends ElasticsearchRepository<Item,Long> {
      
      }
      
    2. 新增文档

       @Test
          public void addDocTest(){
              Item item = new Item(1L, "小米手机9", " 手机","小米", 3499.00, "http://image.es.com/13123.jpg");
              itemRepository.save(item);
      
          }
      
    3. 批量新增

      @Test
          public void addDocsTest(){
              List<Item> list = new ArrayList<>();
              list.add(new Item(2L, "坚果手机R1", " 手机", "锤子", 3689.00, "http://image.es.com/123123.jpg"));
              list.add(new Item(3L, "华为META20", " 手机", "华为", 4499.00, "http://image.es.com/333.jpg"));
              list.add(new Item(4L, "小米Mix2S", "手机", "小米", 4299.00, "http://image.es.com/131223.jpg"));
              list.add(new Item(5L, "荣耀V10", "手机", "华为", 2799.00, "http://image.es.com/131123.jpg"));
              list.add(new Item(6L, "Nova", "手机", "华为", 2999.00, "http://image.es.com/131123.jpg"));
              // 接收对象集合,实现批量新增
              itemRepository.saveAll(list);
      
          }
      
    4. 修改文档(和新增一样的接口,请求方式改为PUT)

    5. 基本查询

      1. 查询全部并根据价格升序

          @Test
            public void queryTest(){
                Iterable<Item> items = itemRepository.findAll(Sort.by(Sort.Direction.DESC, "price"));
                for (Item item : items) {
                    System.out.println(item);
                }
            }
        	  /* output
        	    Item(id=3, title=华为META20, category= 手机, brand=华为, price=4499.0, images=http://image.es.com/333.jpg)
        		Item(id=4, title=小米Mix2S, category=手机, brand=小米, price=4299.0, images=http://image.es.com/131223.jpg)
        		Item(id=2, title=坚果手机R1, category= 手机, brand=锤子, price=3689.0, images=http://image.es.com/123123.jpg)
        		Item(id=1, title=小米手机8, category= 手机, brand=小米, price=3499.0, images=http://image.es.com/13123.jpg)
        		Item(id=6, title=Nova, category=手机, brand=华为, price=2999.0, images=http://image.es.com/131123.jpg)
        		*/
        

Es查询更多细节

  1. 简单原生方式查询

       @Test
        public void queryTest2(){
            // 词条查询
            MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title", "小米");
            // 执行查询
            Iterable<Item> items = itemRepository.search(queryBuilder);
            items.forEach(System.out::println);
        }
        /* output
    	Item(id=1, title=小米手机8, category= 手机, brand=小米, price=3499.0, images=http://image.es.com/13123.jpg)
    	Item(id=4, title=小米Mix2S, category=手机, brand=小米, price=4299.0, images=http://image.es.com/131223.jpg)
    	*/
    
  2. 复杂原生方式查询

        @Test
        public void queryTest3(){
            //创建查询构建器
            NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
            //结果过滤
            queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{"id","title","price"},null));
            //添加查询条件
            queryBuilder.withQuery(QueryBuilders.matchQuery("title","小米手机"));
            //排序
            queryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC));
            //分页
            queryBuilder.withPageable(PageRequest.of(0,2));
            //查询
            Page<Item> result = itemRepository.search(queryBuilder.build());
    
            long totalElements = result.getTotalElements();
            System.out.println("总记录个数: "+totalElements);
            int totalPages = result.getTotalPages();
            System.out.println("总页数个数: "+totalPages);
            List<Item> itemList = result.getContent();
            itemList.forEach(System.out::println);
        }
        /* output
    		总记录个数: 3
    		总页数个数: 2
    		Item(id=4, title=小米Mix2S, category=null, brand=null, price=4299.0, images=null)
    		Item(id=2, title=坚果手机R1, category=null, brand=null, price=3689.0, images=null)
        */
    
  3. 聚合为桶

    @Test
        public void queryTest4(){
            NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
            // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
            queryBuilder.addAggregation(
                    AggregationBuilders.terms("brands").field("brand"));
            // 2、查询,需要把结果强转为AggregatedPage类型
            AggregatedPage<Item> aggPage = (AggregatedPage<Item>) itemRepository.search(queryBuilder.build());
            // 3、解析
            // 3.1、从结果中取出名为brands的那个聚合,
            // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
            StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
            // 3.2、获取桶
            List<StringTerms.Bucket> buckets = agg.getBuckets();
            // 3.3、遍历
            for (StringTerms.Bucket bucket : buckets) {
            // 3.4、获取桶中的key,即品牌名称
                System.out.println("Key: "+bucket.getKeyAsString());
            // 3.5、获取桶中的文档数量
                System.out.println("Value: "+bucket.getDocCount());
            }
        }
        /* output
        	Key: 华为
    		Value: 3
    		Key: 小米
    		Value: 2
    		Key: 锤子
    		Value: 1
        */
    

你可能感兴趣的:(笔记,elasticsearch,java,es)