public class SeqSearch {
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5 };// 没有顺序的数组
int index = seqSearch(arr, -11);
if (index == -1) {
System.out.println("没有找到到");
} else {
System.out.println("找到,下标为=" + index);
}
}
/**
* 这里我们实现的线性查找是找到一个满足条件的值,就返回
*
* @param arr
* @param value
* @return
*/
public static int seqSearch(int[] arr, int value) {
// 线性查找是逐一比对,发现有相同值,就返回下标
for (int i = 0; i < arr.length; i++) {
if (arr[i] == value) {
return i;
}
}
return -1;
}
}
找到,下标为=4
//注意:使用二分查找的前提是 该数组是有序的.
public class BinarySearch {
public static void main(String[] args) {
int arr[] = { 1, 8, 10, 89, 1000, 1234 };
int resIndex = binarySearch(arr, 0, arr.length - 1, 1000);
System.out.println("resIndex=" + resIndex);
}
// 二分查找算法
/**
*
* @param arr 数组
* @param left 左边的索引
* @param right 右边的索引
* @param findVal 要查找的值
* @return 如果找到就返回下标,如果没有找到,就返回 -1
*/
public static int binarySearch(int[] arr, int left, int right, int findVal) {
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return -1;
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向 右递归
return binarySearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
}
resIndex=4
//注意:使用二分查找的前提是 该数组是有序的.
public class BinarySearch {
public static void main(String[] args) {
int arr[] = { 1, 8, 10, 89, 1000, 1000, 1000, 1234 };
List<Integer> resIndexList = binarySearch(arr, 0, arr.length - 1, 1000);
System.out.println("resIndexList=" + resIndexList);
}
// 完成一个课后思考题:
/*
* 课后思考题: {1,8, 10, 89, 1000, 1000,1234} 当一个有序数组中, 有多个相同的数值时,如何将所有的数值都查找到,比如这里的
* 1000
*
* 思路分析 1. 在找到mid 索引值,不要马上返回 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList 4. 将Arraylist返回
*/
public static List<Integer> binarySearch(int[] arr, int left, int right, int findVal) {
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return new ArrayList<Integer>();
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向 右递归
return binarySearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch(arr, left, mid - 1, findVal);
} else {
// 思路分析
// 1. 在找到mid 索引值,不要马上返回
// 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
// 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
// 4. 将Arraylist返回
List<Integer> resIndexlist = new ArrayList<Integer>();
// 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
int temp = mid - 1;
while (true) {
if (temp < 0 || arr[temp] != findVal) {// 退出
break;
}
// 否则,就temp 放入到 resIndexlist
resIndexlist.add(temp);
temp -= 1; // temp左移
}
resIndexlist.add(mid); //
// 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
temp = mid + 1;
while (true) {
if (temp > arr.length - 1 || arr[temp] != findVal) {// 退出
break;
}
// 否则,就temp 放入到 resIndexlist
resIndexlist.add(temp);
temp += 1; // temp右移
}
return resIndexlist;
}
}
}
resIndexList=[4, 5, 6]
将折半查找中的求 mid 索引的公式 , low 表示左边索引 left ,high 表示右边索引 right ,key 就是前面我们讲的 findVal
图中公式:int mid = low + (high - low) * (key - arr[low]) / (arr[high] - arr[low]) ;
对应前面的代码公式:
int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left])
大致思路和二分查找一样,有如下不同:
寻找 mid 公式不同:
int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left]);
由于公式中出现 findVal ,所以 findVal 的值不能过大或者过小,否则会引起 mid 过大或过小,引起数组越界问题,
public class InsertValueSearch {
public static void main(String[] args) {
int [] arr = new int[100];
for(int i = 0; i < 100; i++) {
arr[i] = i + 1;
}
int index = insertValueSearch(arr, 0, arr.length - 1, 1);
System.out.println("index = " + index);
}
//编写插值查找算法
//说明:插值查找算法,也要求数组是有序的
/**
*
* @param arr 数组
* @param left 左边索引
* @param right 右边索引
* @param findVal 查找值
* @return 如果找到,就返回对应的下标,如果没有找到,返回-1
*/
public static int insertValueSearch(int[] arr, int left, int right, int findVal) {
System.out.println("插值查找次数~~");
//注意:findVal < arr[left] 和 findVal > arr[right] 必须需要,否则我们得到的 mid 可能越界
// findVal < arr[left] :说明待查找的值比数组中最小的元素都小
// findVal > arr[right] :说明待查找的值比数组中最大的元素都大
if (left > right || findVal < arr[left] || findVal > arr[right]) {
return -1;
}
// 求出mid, 自适应,额,这不就是一次函数吗
// findVal = arr[left] 时,mid = left
// findVal = arr[right] 时,mid = right
int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
int midVal = arr[mid];
if (findVal > midVal) { // 说明应该向右边递归
return insertValueSearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 说明向左递归查找
return insertValueSearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
}
插值查找次数~~
index = 0
那为什么一定要等分呐?能不能进行“黄金分割”?也就是 mid = left+0.618(right-left) ,当然mid 要取整数。如果这样查找,时间复杂性是多少?也许你还可以编程做个试验,比较一下二分法和“黄金分割”法的执行效率。
斐波那契查找算法又称为黄金分割法查找算法,斐波那契查找原理与前两种相似, 仅仅改变了中间结点(mid) 的位置,mid 不再是中间或由插值计算得到,而是位于黄金分割点附近, 即 mid = low + F(k-1) - 1
对 F(k)-1 的理解
F[k]-1) =(F[k-1]-1) +(F[k-2]-1) + 1
public class FibonacciSearch {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5 };
System.out.println("index=" + fibSearch(arr, 5));
}
// 因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
// 非递归方法得到一个斐波那契数列
public static int[] fib() {
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
// 编写斐波那契查找算法
// 使用非递归的方式编写算法
/**
*
* @param a 数组
* @param key 我们需要查找的关键码(值)
* @return 返回对应的下标,如果没有-1
*/
public static int fibSearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;
int k = 0; // 表示斐波那契分割数值的下标
int mid = 0; // 存放mid值
int f[] = fib(); // 获取到斐波那契数列
// 获取到斐波那契分割数值的下标
while (high > f[k] - 1) {
k++;
}
// 因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
// 不足的部分会使用0填充
int[] temp = Arrays.copyOf(a, f[k]);
// 实际上需求使用a数组最后的数填充 temp
// 举例:
// temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234,
// 1234,}
for (int i = high + 1; i < temp.length; i++) {
temp[i] = a[high];
}
// 使用while来循环处理,找到我们的数 key
while (low < high) { // 只要这个条件满足,就可以找
mid = low + f[k - 1] - 1;
if (key < temp[mid]) { // 我们应该继续向数组的前面查找(左边)
high = mid - 1;
// 为甚是 k--
// 说明
// 1. 全部元素 = 前面的元素 + 后边元素
// 2. f[k] = f[k-1] + f[k-2]
// 因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
// 即 在 f[k-1] 的前面继续查找 k--
// 即下次循环 mid = f[k-1-1]-1
k--;
} else if (key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
low = mid + 1;
// 为什么是k -=2
// 说明
// 1. 全部元素 = 前面的元素 + 后边元素
// 2. f[k] = f[k-1] + f[k-2]
// 3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
// 4. 即在f[k-2] 的前面进行查找 k -=2
// 5. 即下次循环 mid = f[k - 1 - 2] - 1
k -= 2;
} else { // 找到
// 需要确定,返回的是哪个下标
if (mid <= high) {
return mid;
} else {
return high;
}
}
}
if(a[low]==key) {
return low;
}
else {
return -1;
}
}
}
index=4