- “闭门造车”之多模态思路浅谈:自回归学习与生成
PaperWeekly
回归学习数据挖掘人工智能机器学习
©PaperWeekly原创·作者|苏剑林单位|科学空间研究方向|NLP、神经网络这篇文章我们继续来闭门造车,分享一下笔者最近对多模态学习的一些新理解。在前文《“闭门造车”之多模态思路浅谈:无损》中,我们强调了无损输入对于理想的多模型模态的重要性。如果这个观点成立,那么当前基于VQ-VAE、VQ-GAN等将图像离散化的主流思路就存在能力瓶颈,因为只需要简单计算一下信息熵就可以表明离散化必然会有严重
- 「日拱一码」020 机器学习——数据处理
胖达不服输
「日拱一码」机器学习人工智能数据处理python
目录数据清洗缺失值处理删除缺失值:填充缺失值:重复值处理检测重复值处理重复值异常值处理Z-score方法IQR方法(四分位距)数据一致性检查数据转换规范化(归一化)Min-Max归一化MaxAbsScaler标准化离散化等宽离散化等频离散化数据清洗数据清洗是数据处理的第一步,目的是去除噪声数据、处理缺失值和异常值,使数据更加干净、可用缺失值处理删除缺失值:如果数据集中缺失值较少,可以直接删除包含缺
- 【NWFSP问题】基于中华穿山甲算法CPO求解零等待流水车间调度问题NWFSP研究(Matlab代码实现)
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述1.引言2.理论基础2.1中华穿山甲算法(CPO)核心原理2.2NWFSP数学模型3.CPO-NWFSP求解框架设计3.1编码与解码3.2离散化位置更新3.3目标函数适配4.实验设计与性能分析4.1实验设置4.2结果分析4.3敏感性分析5.结论与展望
- 脉冲编码调制(PCM)
2301_80709554
pcm
#打倒拦路虎#脉冲编码调制:一种把模拟数据变换为数字信号的数字技术(模拟数据数字化技术)脉冲编码调制过程:取样->量化->编码取样:本质上是在离散时间点上获取模拟信号的瞬时电平值(幅度值),获得的值为连续幅度值。根据莱奎斯特取样定理,以大于等于模拟信号频率两倍的取样频率获得的样本空间就能恢复原理的模拟信号。量化:将抽样后的连续幅度值映射到有限个离散电平的过程,即幅度的离散化。例如:把语音样本量化
- 16、流体力学数值模拟
404Feels
流体力学数值模拟纳维-斯托克斯方程
流体力学数值模拟1.流体力学的基本方程流体力学是研究流体(液体和气体)运动规律的学科,其基本方程是纳维-斯托克斯方程(Navier-Stokesequation)。该方程描述了流体的速度、压力、温度等物理量随时间和空间的变化。为了便于数值求解,我们需要将这些方程离散化。以下是纳维-斯托克斯方程的标准形式:[\frac{\partial\mathbf{u}}{\partialt}+(\mathbf{
- 材料力学数值方法:有限元法(FEM)在流体力学中的应用_2024-08-04_00-17-21.Tex
chenjj4003
材料力学算法计算机视觉人工智能机器学习网络
材料力学数值方法:有限元法(FEM)在流体力学中的应用绪论有限元法的基本概念有限元法(FiniteElementMethod,FEM)是一种数值计算方法,用于求解复杂的工程问题,如结构力学、热传导、流体力学等。它将连续的物理域离散化为有限数量的、形状规则的子域,即“有限元”。每个子域内的物理量(如位移、压力、温度等)用多项式函数近似表示,通过在每个子域内应用物理定律(如牛顿第二定律、连续性方程等)
- [学习] PID算法原理与实践(代码示例)
极客不孤独
学习算法c语言
PID算法原理与实践文章目录PID算法原理与实践一、PID算法原理1.1PID算法概述1.定义2.应用领域3.核心目标1.2基本原理1.3数学表达离散化实现(适用于数字控制)二、实践案例(C语言)1.电机转速控制2.温度控制系统3.时钟驯服系统三、常见问题与优化1.积分饱和(Windup)问题2.噪声干扰问题3.非线性系统适配问题四、扩展方向1.数字PID与模拟PID的差异2.变参数PID(如增益
- Sklearn 机器学习 数值离散化 虚拟编码
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化+虚拟编码实战详解在机器学习的特征工程中,数值型特征并不总是适合直接输入模型。尤其是树模型或分类模型时,**将连续变量进行离散化(分箱)+虚拟编码(独热编码)**是一种常见且高效的
- Sklearn 机器学习 数值离散化 区间标签
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化之区间标签设置详解在机器学习中,连续数值型特征并不总是最优选择,尤其是在面对一些对数值大小不敏感的模型(如决策树、朴素贝叶斯)时。此时,我们常常希望将连续变量离散化(Discret
- Spring Boot集成RabbitMQ的使用
码海浮生
后端Java技术类java-rabbitmqspringbootrabbitmq
作者:知识浅谈,CSDN签约讲师,CSDN博客专家,华为云云享专家,阿里云专家博主擅长领域:全栈工程师、爬虫、ACM算法微信:zsqtcyw联系我领取学习资料SpringBoot集成RabbitMQ的使用引言引入依赖配置RabbitMQ交换机、队列和绑定声明交换机和队列发送消息接收消息消息类型消息确认发送确认消费确认消息序列化监控与管理注意事项总结引言RabbitMQ是一个开源的消息代理和队列服务
- 解锁数据宝藏:数据挖掘之数据预处理全解析
奔跑吧邓邓子
必备核心技能数据挖掘数据预处理机器学习
目录一、引言:数据预处理——数据挖掘的基石二、数据预处理的重要性2.1现实数据的问题剖析2.2数据预处理的关键作用三、数据预处理的核心方法3.1数据清洗3.1.1缺失值处理3.1.2离群点处理3.1.3噪声处理3.2数据集成3.2.1实体识别3.2.2冗余处理3.2.3数据值冲突处理3.3数据变换3.3.1平滑处理3.3.2聚合操作3.3.3离散化3.3.4归一化四、数据预处理的实践流程4.1数据
- 2D盖子驱动腔流使用SIMPLE算法求解:二维流体动力学的MATLAB实现
乔钥曼
2D盖子驱动腔流使用SIMPLE算法求解:二维流体动力学的MATLAB实现【下载地址】2D盖子驱动腔流使用SIMPLE算法求解本项目提供了一个基于MATLAB的二维盖子驱动腔流求解示例,采用经典的SIMPLE算法实现速度-压力耦合。通过设置明确的边界条件,利用交错网格对速度场进行离散化,并结合Jacobi方法迭代更新解。项目中详细介绍了压力修正的技巧,帮助用户优化求解精度和收敛速度。无论是学习计算
- SpringBoot响应式编程 WebFlux入门教程
码海浮生
Java后端技术类springboot后端java
作者:知识浅谈,CSDN签约讲师,CSDN博客专家,华为云云享专家,阿里云专家博主擅长领域:全栈工程师、爬虫、ACM算法微信:zsqtcyw联系我领取学习资料SpringBoot响应式编程WebFlux入门教程概述快速入门关键概念配置细节测试方法总结概述SpringBoot响应式编程的核心框架之一是WebFlux,它是专为反应式编程设计的Web框架。与传统的SpringMVC相比,WebFlux具
- SE(Secure Element)加密芯片与MCU协同工作的典型流程
czy8787475
单片机嵌入式硬件
以下是SE(SecureElement)加密芯片与MCU协同工作的典型流程,综合安全认证、数据保护及防篡改机制:一、基础认证流程(参数保护方案)密钥预置SE芯片与MCU分别预置相同的3DES密钥(Key1、Key2)。参数存储SE芯片预存产品关键参数(如Data),存储格式为离散化Lv结构,数据大小由宏定义控制。随机数交换MCU生成16字节随机数Rand1,加密后发送读指令至SE芯片;SE生
- 《Image Classification with Classic and Deep Learning Techniques》复现
几何心凉
IT优质推荐深度学习人工智能
1引言图像分类作为计算机视觉领域的核心任务,旨在将输入图像映射到离散化的语义类别标签,广泛应用于人脸识别、自动驾驶、医疗影像诊断、安防监控等场景。传统方法主要依赖手工设计的特征描述子(如SIFT、HOG、LBP)结合浅层模型(如BoVW、Fisher向量、SVM),以其可解释性和低资源消耗见长,但在端到端优化与高级表征能力方面不及深度学习。近年来,卷积神经网络(CNN)在大规模数据集(如Image
- Spring Boot 3中使用Jasypt实现配置文件信息加密
码海浮生
Java后端技术类springboot后端java
作者:知识浅谈,CSDN签约讲师,CSDN博客专家,华为云云享专家,阿里云专家博主擅长领域:全栈工程师、爬虫、ACM算法微信:zsqtcyw联系我领取学习资料SpringBoot3中使用Jasypt实现配置文件信息加密前言创建新的SpringBoot项目添加Jasypt依赖加密配置参数配置YAML或properties文件配置Jasypt解密密码编写代码访问配置总结前言Jasypt(JavaSim
- B3694 数列离散化
C++chaofan
算法c++
B3694数列离散化-洛谷#includeusingnamespacestd;intt;inta[100005],b[100005];intmain(){cin>>t;while(t--){intn;cin>>n;for(inti=1;i>a[i];b[i]=a[i];}sort(a+1,a+n+1);//排序intans=unique(a+1,a+n+1)-(a+1);//去重for(inti=
- 每日刷题列表
天马流星1
c++
2024年学习内容或题目难度知识点11.61.BLO蓝割点与桥2.树状数组1黄树状数组3.树状数组2黄树状数组11.71.学习树状数组2.楼兰图腾绿树状数组3.树状数组3黄~绿区间修改区间查询11.81.基本学完树状数组2.迷失的牛绿树状数组3.学习离散化4.数列离散化普及-离散化11.101.洛谷基础赛写题加订题三道红橙黄2.负环黄负环与差分约束系统3.逆序对黄树状数组11.111.圆桌骑士紫割
- 运动规划实战案例 | 图解基于状态晶格(State Lattice)的路径规划(附ROS C++/Python仿真)
Mr.Winter`
c++人工智能机器人ROSROS2自动驾驶
目录1控制采样vs状态采样2StateLattice路径规划2.1算法流程2.2Lattice运动基元生成2.3几何代价函数2.4运动学约束启发式3算法仿真3.1ROSC++仿真3.2Python仿真1控制采样vs状态采样控制采样的技术路线源自经典的运动学建模思想。这种方法将机器人的控制指令空间进行离散化,预设一组基础运动模式(如固定转向角、恒定速度等),通过前向积分生成候选路径。以差速驱动机器人
- 生物计算芯片编译困境:SNN脉冲时序编码的优化迷宫与破局之道
尘烬海
serverless开发语言缓存
一、脉冲时序编码的数学本质在SNN的数学框架中,脉冲时序编码的数学表征可分解为三个核心维度:1.时间编码微分几何结构脉冲时间序列在微分流形上的嵌入遵循非线性动力学规律,可用李导数描述脉冲相位在流形上的传播特性:LvT=vμ∂μT+ΓμνλvνTμ其中T表示脉冲时序张量场,Γ为流形联络系数。这导致硬件编译时需要考虑流形结构的离散化近似误差。2.脉冲相位同步代数神经群体间的相位同步涉及非交换代数结构,
- python打卡 DAY 6 描述性统计
沐兮兮兮
Python打卡python开发语言机器学习笔记pandas
目录一.单特征可视化1.1连续特征箱线图/核密度直方图笔记:1.1.1中文显示配置1.1.2.箱线图绘制1.1.3.核密度直方图1.2离散特征柱状图二.特征和标签关系可视化2.1连续变量vs标签可视化方式:箱线图/小提琴图/核密度估计直方图2.2离散变量vs标签可视化方式:柱状图三、柱状图美化笔记:3.1.数据分组(离散化)3.2.计数柱状图绘制一.单特征可视化1.1连续特征箱线图/核密度直方图i
- 【离散化 前缀和 二分 滑动窗口】P2862 [USACO06JAN] Corral the Cows G|普及+
软件架构师何志丹
#工作级难度算法题解c++洛谷算法离散化前缀和二分滑动窗口
本文涉及的基础知识点C++二分查找C++算法:滑动窗口及双指针总结C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例包括课程视频[USACO06JAN]CorraltheCowsG题目描述FarmerJohnwishestobuildacorralforhiscows.Beingfinickybeasts,theydemandthatthecorralbesquareandthatthe
- Nonlinear total variation based noise removal algorithms论文阅读
青铜锁00
论文阅读#退化论文阅读图像处理
Nonlineartotalvariationbasednoiseremovalalgorithms1.论文的研究目标与意义1.1研究目标1.2实际意义2.论文的创新方法与核心公式2.1总变差最小化模型2.1.1欧拉-拉格朗日方程2.1.2演化方程(梯度下降法)2.1.3数值离散化2.2与传统方法的对比3.实验设计与结果分析3.1实验设置3.2关键数据4.未来研究方向与挑战4.1学术挑战4.2技术
- Pandas一站式学习,创建,索引使用,运算,pd可视化柱状图等,csv,hdf5,json格式数据读取存储,NaN值处理,数据离散化,数据合并,交叉表与透视表
山顶极客
Pandas专栏pandas数据挖掘python
Pandas一站式学习,索引使用,运算,pd可视化,csv,hdf5,json格式数据读取存储,NaN值处理,数据离散化,数据合并分组,交叉表与透视表python一站式学习->:python一站式学习,python基础,数据类型,numpy,pandas,机器学习,NLP自然语言处理,deepseek大预言模型,Tensorflow,CV视觉Pandas一站式学习pandas一站式学习->:Pan
- 区间合并的应用:格子染色(2019美团面试题)
evy
算法
上题先:其实我一开始是用的离散化再加上二维前缀和做的,我将每个点的的x,y值都进行离散化,虽然避免了开一个2e9*2e9的数组,但是离散化后的a数组也需要2e5*2e5理所当然的MLE了,虽然后面想想我这个离散化后从根本上就是错误的,因为离散化后的数组并不能将原本线段的重合给还原出来。后面看了题解才发现,要用到二维的区间合并,然后再判重。与一维的区间合并不同的就是要在每个区间的存储时加上其行号/列
- 基于Matlab实现微带贴片天线仿真程序
Matlab仿真实验室
Matlab仿真实验1000例matlab开发语言微带贴片天线仿真程序
微带贴片天线是一种广泛应用于无线通信领域的天线类型,因其结构简单、尺寸小巧而备受青睐。在MATLAB环境中,可以使用时域有限差分(FiniteDifferenceTimeDomain,FDTD)方法对微带天线进行仿真,以研究其电磁性能。让我们详细了解一下FDTD方法。这是一种数值计算方法,用于求解麦克斯韦方程,以模拟电磁场随时间的变化。FDTD的基本思想是将空间离散化为小的网格单元,时间也离散为小
- 算法复习(二分+离散化+快速排序+归并排序+树状数组)
一个人在码代码的章鱼
算法学习刷题算法c++数据结构
一、二分算法二分算法,堪称算法世界中的高效查找利器,其核心思想在于利用数据的有序性,通过不断将查找区间减半,快速定位目标元素或满足特定条件的位置。1.普通二分普通二分适用于在有序数组中查找特定元素的位置。我们可以进一步细分需求,如查找满足条件的最左边的数的下标,或者最右边的数的下标。以代码中的find1和find2函数为例:cpp#includeusingnamespacestd;constint
- Spark-Streaming
美味的大香蕉
笔记
探索Spark-Streaming:实时数据处理的得力助手在大数据处理领域,实时处理越来越重要。今天就来聊一聊Spark生态中处理流式数据的利器——Spark-Streaming。Spark-Streaming主要用于处理流式数据,像从Kafka、Flume等数据源来的数据,它都能轻松应对。它使用离散化流(DStream)作为核心抽象。简单来说,DStream就是把随时间收到的数据,按照时间区间封
- 【C++游戏引擎开发】第19篇:Compute Shader实现Tile划分
JuicyActiveGilbert
C++游戏引擎开发知识点c++游戏引擎开发语言
一、Tile划分的数学基础1.1Tile尺寸的几何分析1.1.1屏幕空间离散化原理设屏幕分辨率为W×HW\timesHW×H,Tile尺寸为Tw×ThT_w\timesT_hTw×Th,则Tile总数为:Ntiles=⌈WTw⌉×⌈HTh⌉N_{tiles}=\lceil\frac{W}{T_w}\rceil\times\lceil\frac{H}{T_h}\rceilNtiles=⌈TwW⌉×⌈
- 高度图(Heightmap)
JackieZeng527
数学建模机器人人工智能
高度图的数学组成与建模方法高度图(Heightmap)是一种基于规则网格的地形表示方法,其数学本质是将三维地形简化为二维离散函数,通过高度值的存储和插值实现地形重建。以下从数学建模角度系统阐述其组成原理及关键技术。一、基础数学模型离散化定义设连续地形为三维函数z=f(x,y),将二维平面离散化为N*M的规则网格:G={(xi,yj,hij)}其中{xi=xmin+iΔx,i=0,1,...,N−1
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite