Spark1.5.2写kafka数据到Elasticsearch入坑总结

概述:总结一下Spark1.5.2+Kafka 0.8+中使用Direct Approach(直接获取的方式)消费Kafka数据开发过程中遇到的各种问题和经验.

整合Spring

    Spark开发中引入Spring可以方便的管理配置信息,数据源等,借助于Scala的单例特性可以创建一个独立的加载Spring IOC容器的工具类,剩下的事情就好办了,在配置文件中完成就可以了,并没有尝试去使用注解,当然也觉得没有必要这里用Spring仅仅是想使用Spring进行一系列的配置文件的管理,和特殊Bean的配置.

object SpringUtil {
  val context=new ClassPathXmlApplicationContext("spring.xml")
}

整合Elasticsearch

    经验看来在Spark中使用Elasticsearch for Apache Hadoop 模块提供的Spark RDD写入Elasticsearch 的性能并不比直接使用Elasticsearch 的Bulk Api更快,在实时流量大的场景下直接使用Elasticsearch Bulk Api 写入效率更高,是时候发挥Spring的作用了

object ElasticsearchUtil {

  val log = LogFactory.getLog(ElasticsearchUtil.getClass);
  val config = SpringUtil.context.getBean(classOf[Config])
  val settings = Settings.builder().put("cluster.name", config.getEsCluster)
  val client = TransportClient.builder().settings(settings).build()

  for (node <- config.getEsNodes.split(",")) {
    val iport = node.split(":")
    if (iport.length == 1) {
      client.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(iport(0)), 9300))
    } else if (iport.length == 2) {
      client.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(iport(0)), iport(1).toInt))
    } else {
      log.warn("非法的 node配置:" + node + "!!")
    }
  }

  val bulkProcessor = BulkProcessor.builder(client, new BluBulkProcessorListener())
    //设置每Bulk的操作数量,满了就执行刷新操作
    .setBulkActions(config.getBulkActions)
    //设置Bulk到多大的时候执行一次刷新
    .setBulkSize(new ByteSizeValue(config.getBulkSize))
    //多久执行一次刷新操作
    .setFlushInterval(TimeValue.timeValueMillis(config.getBulkFlushInterval))
    .setConcurrentRequests(config.getBulkConcurrentRequest)
    //设置运行策略尝试三次间隔1秒
    .setBackoffPolicy(BackoffPolicy.constantBackoff(TimeValue.timeValueSeconds(1), 3))
    .setName("bulkinstall")
    .build()
}

整合Kafka

    这里使用Spark Kafka 模块提供的直接访问Kafka分区数据的方式来获取RDD数据,如果需要记录消费的状态则需要手动维护偏移量.这里做一个简单的封装,代码复用了Spark Streaming Kafka模块的KafkaCluster API并少有改动,封装了KafkaUtils,以对外提供是否允许消费历史数据的语意,同时实现了auto.offset.reset 语意.

    修改KafkaCluster类的原因为它本身的几个方法是私有的,简单改造后可直接使用,主要用来访问Kafaka集群信息,并可便捷的访问集群信息和消费者信息.

class KafkaCluster(val kafkaParams: Map[String, String]) extends Serializable {
  import KafkaCluster.{ Err, LeaderOffset, SimpleConsumerConfig }

  // ConsumerConfig isn't serializable
  @transient private var _config: SimpleConsumerConfig = null

  def config: SimpleConsumerConfig = this.synchronized {
    if (_config == null) {
      _config = SimpleConsumerConfig(kafkaParams)
    }
    _config
  }

  def connect(host: String, port: Int): SimpleConsumer =
    new SimpleConsumer(host, port, config.socketTimeoutMs,
      config.socketReceiveBufferBytes, config.clientId)

  def connectLeader(topic: String, partition: Int): Either[Err, SimpleConsumer] =
    findLeader(topic, partition).right.map(hp => connect(hp._1, hp._2))

  // Metadata api
  // scalastyle:off
  // https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-MetadataAPI
  // scalastyle:on

  def findLeader(topic: String, partition: Int): Either[Err, (String, Int)] = {
    val req = TopicMetadataRequest(TopicMetadataRequest.CurrentVersion,
      0, config.clientId, Seq(topic))
    val errs = new Err
    withBrokers(Random.shuffle(config.seedBrokers), errs) { consumer =>
      val resp: TopicMetadataResponse = consumer.send(req)
      resp.topicsMetadata.find(_.topic == topic).flatMap { tm: TopicMetadata =>
        tm.partitionsMetadata.find(_.partitionId == partition)
      }.foreach { pm: PartitionMetadata =>
        pm.leader.foreach { leader =>
          return Right((leader.host, leader.port))
        }
      }
    }
    Left(errs)
  }

  def findLeaders(
    topicAndPartitions: Set[TopicAndPartition]): Either[Err, Map[TopicAndPartition, (String, Int)]] = {
    val topics = topicAndPartitions.map(_.topic)
    val response = getPartitionMetadata(topics).right
    val answer = response.flatMap { tms: Set[TopicMetadata] =>
      val leaderMap = tms.flatMap { tm: TopicMetadata =>
        tm.partitionsMetadata.flatMap { pm: PartitionMetadata =>
          val tp = TopicAndPartition(tm.topic, pm.partitionId)
          if (topicAndPartitions(tp)) {
            pm.leader.map { l =>
              tp -> (l.host -> l.port)
            }
          } else {
            None
          }
        }
      }.toMap

      if (leaderMap.keys.size == topicAndPartitions.size) {
        Right(leaderMap)
      } else {
        val missing = topicAndPartitions.diff(leaderMap.keySet)
        val err = new Err
        err.append(new SparkException(s"Couldn't find leaders for ${missing}"))
        Left(err)
      }
    }
    answer
  }

  def getPartitions(topics: Set[String]): Either[Err, Set[TopicAndPartition]] = {
    getPartitionMetadata(topics).right.map { r =>
      r.flatMap { tm: TopicMetadata =>
        tm.partitionsMetadata.map { pm: PartitionMetadata =>
          TopicAndPartition(tm.topic, pm.partitionId)
        }
      }
    }
  }

  def getPartitionMetadata(topics: Set[String]): Either[Err, Set[TopicMetadata]] = {
    val req = TopicMetadataRequest(
      TopicMetadataRequest.CurrentVersion, 0, config.clientId, topics.toSeq)
    val errs = new Err
    withBrokers(Random.shuffle(config.seedBrokers), errs) { consumer =>
      val resp: TopicMetadataResponse = consumer.send(req)
      val respErrs = resp.topicsMetadata.filter(m => m.errorCode != ErrorMapping.NoError)

      if (respErrs.isEmpty) {
        return Right(resp.topicsMetadata.toSet)
      } else {
        respErrs.foreach { m =>
          val cause = ErrorMapping.exceptionFor(m.errorCode)
          val msg = s"Error getting partition metadata for '${m.topic}'. Does the topic exist?"
          errs.append(new SparkException(msg, cause))
        }
      }
    }
    Left(errs)
  }

  // Leader offset api
  // scalastyle:off
  // https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetAPI
  // scalastyle:on

  def getLatestLeaderOffsets(
    topicAndPartitions: Set[TopicAndPartition]): Either[Err, Map[TopicAndPartition, LeaderOffset]] =
    getLeaderOffsets(topicAndPartitions, OffsetRequest.LatestTime)

  def getEarliestLeaderOffsets(
    topicAndPartitions: Set[TopicAndPartition]): Either[Err, Map[TopicAndPartition, LeaderOffset]] =
    getLeaderOffsets(topicAndPartitions, OffsetRequest.EarliestTime)

  def getLeaderOffsets(
    topicAndPartitions: Set[TopicAndPartition],
    before: Long): Either[Err, Map[TopicAndPartition, LeaderOffset]] = {
    getLeaderOffsets(topicAndPartitions, before, 1).right.map { r =>
      r.map { kv =>
        // mapValues isnt serializable, see SI-7005
        kv._1 -> kv._2.head
      }
    }
  }

  private def flip[K, V](m: Map[K, V]): Map[V, Seq[K]] =
    m.groupBy(_._2).map { kv =>
      kv._1 -> kv._2.keys.toSeq
    }

  def getLeaderOffsets(
    topicAndPartitions: Set[TopicAndPartition],
    before: Long,
    maxNumOffsets: Int): Either[Err, Map[TopicAndPartition, Seq[LeaderOffset]]] = {
    findLeaders(topicAndPartitions).right.flatMap { tpToLeader =>
      val leaderToTp: Map[(String, Int), Seq[TopicAndPartition]] = flip(tpToLeader)
      val leaders = leaderToTp.keys
      var result = Map[TopicAndPartition, Seq[LeaderOffset]]()
      val errs = new Err
      withBrokers(leaders, errs) { consumer =>
        val partitionsToGetOffsets: Seq[TopicAndPartition] =
          leaderToTp((consumer.host, consumer.port))
        val reqMap = partitionsToGetOffsets.map { tp: TopicAndPartition =>
          tp -> PartitionOffsetRequestInfo(before, maxNumOffsets)
        }.toMap
        val req = OffsetRequest(reqMap)
        val resp = consumer.getOffsetsBefore(req)
        val respMap = resp.partitionErrorAndOffsets
        partitionsToGetOffsets.foreach { tp: TopicAndPartition =>
          respMap.get(tp).foreach { por: PartitionOffsetsResponse =>
            if (por.error == ErrorMapping.NoError) {
              if (por.offsets.nonEmpty) {
                result += tp -> por.offsets.map { off =>
                  LeaderOffset(consumer.host, consumer.port, off)
                }
              } else {
                errs.append(new SparkException(
                  s"Empty offsets for ${tp}, is ${before} before log beginning?"))
              }
            } else {
              errs.append(ErrorMapping.exceptionFor(por.error))
            }
          }
        }
        if (result.keys.size == topicAndPartitions.size) {
          return Right(result)
        }
      }
      val missing = topicAndPartitions.diff(result.keySet)
      errs.append(new SparkException(s"Couldn't find leader offsets for ${missing}"))
      Left(errs)
    }
  }

  // Consumer offset api
  // scalastyle:off
  // https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-OffsetCommit/FetchAPI
  // scalastyle:on

  // this 0 here indicates api version, in this case the original ZK backed api.
  private def defaultConsumerApiVersion: Short = 0

  /** Requires Kafka >= 0.8.1.1 */
  def getConsumerOffsets(
    groupId: String,
    topicAndPartitions: Set[TopicAndPartition]): Either[Err, Map[TopicAndPartition, Long]] =
    getConsumerOffsets(groupId, topicAndPartitions, defaultConsumerApiVersion)

  def getConsumerOffsets(
    groupId: String,
    topicAndPartitions: Set[TopicAndPartition],
    consumerApiVersion: Short): Either[Err, Map[TopicAndPartition, Long]] = {
    getConsumerOffsetMetadata(groupId, topicAndPartitions, consumerApiVersion).right.map { r =>
      r.map { kv =>
        kv._1 -> kv._2.offset
      }
    }
  }

  /** Requires Kafka >= 0.8.1.1 */
  def getConsumerOffsetMetadata(
    groupId: String,
    topicAndPartitions: Set[TopicAndPartition]): Either[Err, Map[TopicAndPartition, OffsetMetadataAndError]] =
    getConsumerOffsetMetadata(groupId, topicAndPartitions, defaultConsumerApiVersion)

  def getConsumerOffsetMetadata(
    groupId: String,
    topicAndPartitions: Set[TopicAndPartition],
    consumerApiVersion: Short): Either[Err, Map[TopicAndPartition, OffsetMetadataAndError]] = {
    var result = Map[TopicAndPartition, OffsetMetadataAndError]()
    val req = OffsetFetchRequest(groupId, topicAndPartitions.toSeq, consumerApiVersion)
    val errs = new Err
    withBrokers(Random.shuffle(config.seedBrokers), errs) { consumer =>
      val resp = consumer.fetchOffsets(req)
      val respMap = resp.requestInfo
      val needed = topicAndPartitions.diff(result.keySet)
      needed.foreach { tp: TopicAndPartition =>
        respMap.get(tp).foreach { ome: OffsetMetadataAndError =>
          if (ome.error == ErrorMapping.NoError) {
            result += tp -> ome
          } else {
            errs.append(ErrorMapping.exceptionFor(ome.error))
          }
        }
      }
      if (result.keys.size == topicAndPartitions.size) {
        return Right(result)
      }
    }
    val missing = topicAndPartitions.diff(result.keySet)
    errs.append(new SparkException(s"Couldn't find consumer offsets for ${missing}"))
    Left(errs)
  }

  /** Requires Kafka >= 0.8.1.1 */
  def setConsumerOffsets(
    groupId: String,
    offsets: Map[TopicAndPartition, Long]): Either[Err, Map[TopicAndPartition, Short]] =
    setConsumerOffsets(groupId, offsets, defaultConsumerApiVersion)

  def setConsumerOffsets(
    groupId: String,
    offsets: Map[TopicAndPartition, Long],
    consumerApiVersion: Short): Either[Err, Map[TopicAndPartition, Short]] = {
    val meta = offsets.map { kv =>
      kv._1 -> OffsetAndMetadata(kv._2)
    }
    setConsumerOffsetMetadata(groupId, meta, consumerApiVersion)
  }

  /** Requires Kafka >= 0.8.1.1 */
  def setConsumerOffsetMetadata(
    groupId: String,
    metadata: Map[TopicAndPartition, OffsetAndMetadata]): Either[Err, Map[TopicAndPartition, Short]] =
    setConsumerOffsetMetadata(groupId, metadata, defaultConsumerApiVersion)

  def setConsumerOffsetMetadata(
    groupId: String,
    metadata: Map[TopicAndPartition, OffsetAndMetadata],
    consumerApiVersion: Short): Either[Err, Map[TopicAndPartition, Short]] = {
    var result = Map[TopicAndPartition, Short]()
    val req = OffsetCommitRequest(groupId, metadata, consumerApiVersion)
    val errs = new Err
    val topicAndPartitions = metadata.keySet
    withBrokers(Random.shuffle(config.seedBrokers), errs) { consumer =>
      val resp = consumer.commitOffsets(req)
      val respMap = resp.commitStatus
      val needed = topicAndPartitions.diff(result.keySet)
      needed.foreach { tp: TopicAndPartition =>
        respMap.get(tp).foreach { err: Short =>
          if (err == ErrorMapping.NoError) {
            result += tp -> err
          } else {
            errs.append(ErrorMapping.exceptionFor(err))
          }
        }
      }
      if (result.keys.size == topicAndPartitions.size) {
        return Right(result)
      }
    }
    val missing = topicAndPartitions.diff(result.keySet)
    errs.append(new SparkException(s"Couldn't set offsets for ${missing}"))
    Left(errs)
  }

  // Try a call against potentially multiple brokers, accumulating errors
  private def withBrokers(brokers: Iterable[(String, Int)], errs: Err)(fn: SimpleConsumer => Any): Unit = {
    brokers.foreach { hp =>
      var consumer: SimpleConsumer = null
      try {
        consumer = connect(hp._1, hp._2)
        fn(consumer)
      } catch {
        case NonFatal(e) =>
          errs.append(e)
      } finally {
        if (consumer != null) {
          consumer.close()
        }
      }
    }
  }
}

object KafkaCluster {
  type Err = ArrayBuffer[Throwable]

  /** If the result is right, return it, otherwise throw SparkException */
  def checkErrors[T](result: Either[Err, T]): T = {
    result.fold(
      errs => throw new SparkException(errs.mkString("\n")),
      ok => ok)
  }

  case class LeaderOffset(host: String, port: Int, offset: Long)

  /**
   * High-level kafka consumers connect to ZK.  ConsumerConfig assumes this use case.
   * Simple consumers connect directly to brokers, but need many of the same configs.
   * This subclass won't warn about missing ZK params, or presence of broker params.
   */
  class SimpleConsumerConfig private (brokers: String, originalProps: Properties)
      extends ConsumerConfig(originalProps) {
    val seedBrokers: Array[(String, Int)] = brokers.split(",").map { hp =>
      val hpa = hp.split(":")
      if (hpa.size == 1) {
        throw new SparkException(s"Broker not the in correct format of : [$brokers]")
      }
      (hpa(0), hpa(1).toInt)
    }
  }

  object SimpleConsumerConfig {
    /**
     * Make a consumer config without requiring group.id or zookeeper.connect,
     * since communicating with brokers also needs common settings such as timeout
     */
    def apply(kafkaParams: Map[String, String]): SimpleConsumerConfig = {
      // These keys are from other pre-existing kafka configs for specifying brokers, accept either
      val brokers = kafkaParams.get("metadata.broker.list")
        .orElse(kafkaParams.get("bootstrap.servers"))
        .getOrElse(throw new SparkException(
          "Must specify metadata.broker.list or bootstrap.servers"))

      val props = new Properties()
      kafkaParams.foreach {
        case (key, value) =>
          // prevent warnings on parameters ConsumerConfig doesn't know about
          if (key != "metadata.broker.list" && key != "bootstrap.servers") {
            props.put(key, value)
          }
      }

      Seq("zookeeper.connect", "group.id").foreach { s =>
        if (!props.containsKey(s)) {
          props.setProperty(s, "")
        }
      }

      new SimpleConsumerConfig(brokers, props)
    }
  }
}
class SparkException(message: String, cause: Throwable)
    extends Exception(message, cause) {

  def this(message: String) = this(message, null)
}

    MYKafkaUtils实现了手动提交偏移的核心逻辑,下文已经添加注释,并实现了auto.offset.reset语意.

object MYKafkaUtils {
  val log: Log = LogFactory.getLog(MYKafkaUtils.getClass)
  val config = SpringUtil.context.getBean(classOf[Config])
  val kafkaCluster = new KafkaCluster(Map("metadata.broker.list" -> config.getKafkaBrokerList))

  /****/
  def createDirectStream[K: ClassTag, V: ClassTag, KD <: Decoder[K]: ClassTag, VD <: Decoder[V]: ClassTag](
    ssc: StreamingContext,
    kafkaParams: Map[String, String],
    topics: Set[String], enabledHistory: Boolean): InputDStream[(K, V)] = {

    //implements auto.offset.reset semanteme
    val autoOffsetRest = kafkaParams.getOrElse("auto.offset.reset", "largest")
    val groupId = kafkaParams.getOrElse("group.id", "group.id")
    if (!enabledHistory) {
      //don`t record offset
      KafkaUtils.createDirectStream[K, V, KD, VD](ssc, kafkaParams, topics)
    } else {
      var fromOffsets = Map[TopicAndPartition, Long]()
      val partions = kafkaCluster.getPartitions(topics)
      //get partitions info exception
      if (partions.isLeft) {
        throw new SparkException(s" get kafka partions failed :${partions.left.get}")
      }
      //get consumer offsets
      val consumerOffsets = kafkaCluster.getConsumerOffsets(groupId, partions.right.get)
      consumerOffsets match {
        //get consumer offsets  exception  maybe is new group
        case Left(err) => {
          log.error(s"get kafka offsets failed:${err}")
          var leaderOffsets: Map[TopicAndPartition, LeaderOffset] = null
          autoOffsetRest match {
            case "smallest " => leaderOffsets = kafkaCluster.getEarliestLeaderOffsets(partions.right.get).right.get
            case "largest" => leaderOffsets = kafkaCluster.getLatestLeaderOffsets(partions.right.get).right.get
            case _ => throw new SparkException("auto.offset.reset not in ['smallest','largest']")
          }
          leaderOffsets.map({
            case (topicPartion, offset) => {
              fromOffsets += (topicPartion -> offset.offset)
              (topicPartion, offset.offset)
            }
          })
          //update consumer offsets
          kafkaCluster.setConsumerOffsets(groupId, fromOffsets)
        }
        case Right(offsets) => {
          //get the earliest offsets
          val earliestOffsets = kafkaCluster.getEarliestLeaderOffsets(partions.right.get).right.get
          offsets.foreach({
            case (topicPartion, offset) => {
              val earliestOffset = earliestOffsets(topicPartion).offset
              //current offset must greater than earliest offset
              if (offset < earliestOffset) {
                log.warn("client offset > earliest offset  used earliest")
                fromOffsets += (topicPartion -> earliestOffset)
              } else {
                fromOffsets += (topicPartion -> offset)
              }
            }
          })

        }
      }
      val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)
      //create DStream from specific  offsets
      KafkaUtils.createDirectStream[K, V, KD, VD, (K, V)](ssc, kafkaParams, fromOffsets, messageHandler);
    }
  }
  /***/
  def updateOffsets[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)], groupId: String): Unit = {
    var offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
    for (offsetRange <- offsetRanges) {
      kafkaCluster.setConsumerOffsets(groupId, Map(TopicAndPartition(offsetRange.topic, offsetRange.partition) -> offsetRange.untilOffset))
    }
  }
}

还有一个最大的坑

    分布式系统中跨节点的数据共享设计复杂的数据序列化操作,意外经常发生往往不能被准确的定位,在写Spark分布式应用程序时应当避免在Spark的Driver节点中共享变量或者应该尽可能的避免让可能运行在分布式环境中Work节点上的代码引用到Driver节点中变量。

    以下是一段运行良好的程序代码,在Scala中孤立多使用伴生对象来实现单例模式,尽可能的让资源在Work节点中实例化,而不是在Driver中通过序列化传到Work中运行.

object MainApp extends App {
  val log: Log = LogFactory.getLog(MainApp.getClass)
  val sparkDefaultConfig = SpringUtil.context.getBean("spark-default", classOf[Properties])
  val sparkConfig = new SparkConf()
  //default configuration from properties
  sparkConfig.setAll(sparkDefaultConfig)
  val config = SpringUtil.context.getBean(classOf[Config])
  log.info("config:" + config)
  val kafkaParams = Map("metadata.broker.list" -> config.getKafkaBrokerList, "group.id" -> config.getKafkaGroupId, "auto.offset.reset" -> config.getKafkaAutoOffsetReset)
  val ssc = new StreamingContext(sparkConfig, Duration.apply(config.getSparkStreamingDuration))
  val topics = config.getKafkaTopic.toSet
  val consumerHistory = config.isBluConsumerHistory()
  val input = MYKafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics, consumerHistory);
  val msgs = input.map(kv => kv._2).map { msg => BluMsgUtil.analysisMsg(msg) }.filter { msg => msg != null }
    .foreachRDD(msgs => msgs.foreach { msg => BluMsgUtil.msgToActionRequest(msg) })
  if (consumerHistory) {
    input.foreachRDD(rdd => {
      MYKafkaUtils.updateOffsets(rdd, config.getKafkaGroupId);
    })
  }
  try {
    ssc.start()
    ssc.awaitTermination()
  } catch {
    case ex: Exception => log.error(ex)
  }
}

总结

    跳坑许久却依旧在坑里.

你可能感兴趣的:(Kafka,Spark大数据分析)