Spark实战(五)spark streaming + flume(Python版)

一、flume安装

(一)概述

   Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中,一般的采集需求,通过对flume的简单配置即可实现,Flume针对特殊场景也具备良好的自定义扩展能力,因此flume可以适用于大部分的日常数据采集场景

(二)运行机制

   1、 Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成

   2、 每一个agent相当于一个数据传递员,内部有三个组件:

a)	Source:采集源,用于跟数据源对接,以获取数据
b)	Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据
c)	Channel:angent内部的数据传输通道,用于从source将数据传递到sink

Spark实战(五)spark streaming + flume(Python版)_第1张图片

(三)Flume采集系统结构图

1、简单结构

   单个agent采集数据

Spark实战(五)spark streaming + flume(Python版)_第2张图片

2、复杂结构

   多级agent之间串联
Spark实战(五)spark streaming + flume(Python版)_第3张图片

(四)Flume的安装部署

   1、去apache官网上下载安装包,并解压tar -zxvf apache-flume-1.8.0-bin,并修改conf目录下flume-env.sh,在里面配置JAVA_HOME

   2、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)
   3、指定采集方案配置文件,在相应的节点上启动flume agent

二、flume push方式

1、spark streaming程序

   首先是flume通过push方式将采集到的数据传递到spark程序上,这种方式基本不用。spark代码如下:

import pyspark
from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.flume import FlumeUtils

if __name__ == "__main__":
    spark = SparkSession\
            .builder\
            .appName("PythonWordCount") \
            .master("local[2]") \
            .getOrCreate()
    sc = spark.sparkContext
    ssc = StreamingContext(sc, 5)
    # hostname = sys.argv[1]
    # port = int(sys.argv[2])
    flumeStream = FlumeUtils.createStream(ssc, "localhost", 8888, pyspark.StorageLevel.MEMORY_AND_DISK_SER_2)
    line = flumeStream.map(lambda x: x[1])
    words = line.flatMap(lambda x: x.split(" "))
    datas = words.map(lambda x: (x, 1))
    result = datas.reduceByKey(lambda agg, obj: agg + obj)
    result.pprint()
    ssc.start()
    ssc.awaitTermination()

   注意:要指定并行度,如在本地运行设置setMaster(“local[2]”),相当于启动两个线程,一个给receiver,一个给computer。否则会出现如下问题

2019-01-09 19:36:16 INFO  ReceiverSupervisorImpl:54 - Called receiver 0 onStart
2019-01-09 19:36:16 INFO  ReceiverSupervisorImpl:54 - Waiting for receiver to be stopped
2019-01-09 19:36:20 INFO  JobScheduler:54 - Added jobs for time 1547033780000 ms
2019-01-09 19:36:25 INFO  JobScheduler:54 - Added jobs for time 1547033785000 ms
2019-01-09 19:36:30 INFO  JobScheduler:54 - Added jobs for time 1547033790000 ms
2019-01-09 19:36:35 INFO  JobScheduler:54 - Added jobs for time 1547033795000 ms
2019-01-09 19:36:40 INFO  JobScheduler:54 - Added jobs for time 1547033800000 ms

   如果是在集群中运行,必须要求集群中可用core数大于1

2、flume conf文件

   在flume的conf目录下新建flume-push.conf内容如下
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # source a1.sources.r1.type = spooldir a1.sources.r1.spoolDir = /home/hadoop/log/flume a1.sources.r1.fileHeader = true # Describe the sink a1.sinks.k1.type = avro #这是接收方 a1.sinks.k1.hostname = 192.168.62.131 a1.sinks.k1.port = 8888 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1

   需要先将spark程序运行,使用以下命令:

spark/bin/spark-submit  --driver-class-path /home/hadoop/spark/jars/*:/home/hadoop/jar/flume/* /tmp/pycharm_project_563/day5/FlumePushWordCount.py

   可能会出现以下问题

	Spark Streaming's Flume libraries not found in class path. Try one of the following.

  1. Include the Flume library and its dependencies with in the
     spark-submit command as

     $ bin/spark-submit --packages org.apache.spark:spark-streaming-flume:2.4.0 ...

  2. Download the JAR of the artifact from Maven Central http://search.maven.org/,
     Group Id = org.apache.spark, Artifact Id = spark-streaming-flume-assembly, Version = 2.4.0.
     Then, include the jar in the spark-submit command as

     $ bin/spark-submit --jars  ...
Traceback (most recent call last):
  File "/tmp/pycharm_project_563/day5/FlumePushWordCount.py", line 12, in 
    flumeStream = FlumeUtils.createStream(ssc, "192.168.62.131", "8888")
  File "/home/hadoop/spark/python/pyspark/streaming/flume.py", line 67, in createStream
    helper = FlumeUtils._get_helper(ssc._sc)
  File "/home/hadoop/spark/python/pyspark/streaming/flume.py", line 130, in _get_helper
    return sc._jvm.org.apache.spark.streaming.flume.FlumeUtilsPythonHelper()
TypeError: 'JavaPackage' object is not callable
   需要去maven仓库下载spark-streaming-flume-assembly.jar,然后放到上面指定的jar目录中去。

   然后运行flume

bin/flume-ng agent -n a1 -c conf/ -f conf/flume-push.conf -Dflume.root.logger=WARN,console
   然后在/home/hadoop/log/flume目录下新建log文件,运行spark的日志中出现如下:

Spark实战(五)spark streaming + flume(Python版)_第4张图片

三、poll方式

1、spark streaming程序

   这种方式是有spark主动去flume拉取数据,代码如下:

from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.flume import FlumeUtils


if __name__ == "__main__":
    spark = SparkSession\
            .builder\
            .appName("PythonWordCount") \
            .master("local[2]") \
            .getOrCreate()
    sc = spark.sparkContext
    ssc = StreamingContext(sc, 5)
    addresses = [("localhost", 8888)]
    flumeStream = FlumeUtils.createPollingStream(ssc, addresses)
    line = flumeStream.map(lambda x: x[1])
    words = line.flatMap(lambda x: x.split(" "))
    datas = words.map(lambda x: (x, 1))
    result = datas.reduceByKey(lambda agg, obj: agg + obj)

    result.pprint()
    ssc.start()
    ssc.awaitTermination()

   如果是本地模式同样需要指定并行度,如果是在集群中运行,必须要求集群中可用core数大于1

2、flume conf文件

   在flume的conf目录下新建flume-poll.conf内容如下:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/log/flume
a1.sources.r1.fileHeader = true

# Describe the sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = localhost
a1.sinks.k1.port = 8888

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
   由于是poll方式,需要的flume
bin/flume-ng agent -n a1 -c conf/ -f conf/flume-poll.conf -Dflume.root.logger=WARN,console
   启动spark程序
spark/bin/spark-submit  --driver-class-path /home/hadoop/spark/jars/*:/home/hadoop/jar/flume/* /tmp/pycharm_project_563/day5/FlumePollWordCount.py 
   同样在/home/hadoop/log/flume目录下新建log文件,将原先生成的COMPLETED文件删除,rm flume/aaa.txt.COMPLETED ,运行spark的日志中出现如下:

Spark实战(五)spark streaming + flume(Python版)_第5张图片

你可能感兴趣的:(python,spark)