Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中,一般的采集需求,通过对flume的简单配置即可实现,Flume针对特殊场景也具备良好的自定义扩展能力,因此flume可以适用于大部分的日常数据采集场景
2、 每一个agent相当于一个数据传递员,内部有三个组件:
a) Source:采集源,用于跟数据源对接,以获取数据
b) Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据
c) Channel:angent内部的数据传输通道,用于从source将数据传递到sink
单个agent采集数据
2、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)
3、指定采集方案配置文件,在相应的节点上启动flume agent
首先是flume通过push方式将采集到的数据传递到spark程序上,这种方式基本不用。spark代码如下:
import pyspark
from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.flume import FlumeUtils
if __name__ == "__main__":
spark = SparkSession\
.builder\
.appName("PythonWordCount") \
.master("local[2]") \
.getOrCreate()
sc = spark.sparkContext
ssc = StreamingContext(sc, 5)
# hostname = sys.argv[1]
# port = int(sys.argv[2])
flumeStream = FlumeUtils.createStream(ssc, "localhost", 8888, pyspark.StorageLevel.MEMORY_AND_DISK_SER_2)
line = flumeStream.map(lambda x: x[1])
words = line.flatMap(lambda x: x.split(" "))
datas = words.map(lambda x: (x, 1))
result = datas.reduceByKey(lambda agg, obj: agg + obj)
result.pprint()
ssc.start()
ssc.awaitTermination()
注意:要指定并行度,如在本地运行设置setMaster(“local[2]”),相当于启动两个线程,一个给receiver,一个给computer。否则会出现如下问题
2019-01-09 19:36:16 INFO ReceiverSupervisorImpl:54 - Called receiver 0 onStart
2019-01-09 19:36:16 INFO ReceiverSupervisorImpl:54 - Waiting for receiver to be stopped
2019-01-09 19:36:20 INFO JobScheduler:54 - Added jobs for time 1547033780000 ms
2019-01-09 19:36:25 INFO JobScheduler:54 - Added jobs for time 1547033785000 ms
2019-01-09 19:36:30 INFO JobScheduler:54 - Added jobs for time 1547033790000 ms
2019-01-09 19:36:35 INFO JobScheduler:54 - Added jobs for time 1547033795000 ms
2019-01-09 19:36:40 INFO JobScheduler:54 - Added jobs for time 1547033800000 ms
如果是在集群中运行,必须要求集群中可用core数大于1
在flume的conf目录下新建flume-push.conf内容如下
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/log/flume
a1.sources.r1.fileHeader = true
# Describe the sink
a1.sinks.k1.type = avro
#这是接收方
a1.sinks.k1.hostname = 192.168.62.131
a1.sinks.k1.port = 8888
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
需要先将spark程序运行,使用以下命令:
spark/bin/spark-submit --driver-class-path /home/hadoop/spark/jars/*:/home/hadoop/jar/flume/* /tmp/pycharm_project_563/day5/FlumePushWordCount.py
可能会出现以下问题
Spark Streaming's Flume libraries not found in class path. Try one of the following.
1. Include the Flume library and its dependencies with in the
spark-submit command as
$ bin/spark-submit --packages org.apache.spark:spark-streaming-flume:2.4.0 ...
2. Download the JAR of the artifact from Maven Central http://search.maven.org/,
Group Id = org.apache.spark, Artifact Id = spark-streaming-flume-assembly, Version = 2.4.0.
Then, include the jar in the spark-submit command as
$ bin/spark-submit --jars ...
Traceback (most recent call last):
File "/tmp/pycharm_project_563/day5/FlumePushWordCount.py", line 12, in
flumeStream = FlumeUtils.createStream(ssc, "192.168.62.131", "8888")
File "/home/hadoop/spark/python/pyspark/streaming/flume.py", line 67, in createStream
helper = FlumeUtils._get_helper(ssc._sc)
File "/home/hadoop/spark/python/pyspark/streaming/flume.py", line 130, in _get_helper
return sc._jvm.org.apache.spark.streaming.flume.FlumeUtilsPythonHelper()
TypeError: 'JavaPackage' object is not callable
需要去maven仓库下载spark-streaming-flume-assembly.jar,然后放到上面指定的jar目录中去。
然后运行flume
bin/flume-ng agent -n a1 -c conf/ -f conf/flume-push.conf -Dflume.root.logger=WARN,console
然后在/home/hadoop/log/flume目录下新建log文件,运行spark的日志中出现如下:
这种方式是有spark主动去flume拉取数据,代码如下:
from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.flume import FlumeUtils
if __name__ == "__main__":
spark = SparkSession\
.builder\
.appName("PythonWordCount") \
.master("local[2]") \
.getOrCreate()
sc = spark.sparkContext
ssc = StreamingContext(sc, 5)
addresses = [("localhost", 8888)]
flumeStream = FlumeUtils.createPollingStream(ssc, addresses)
line = flumeStream.map(lambda x: x[1])
words = line.flatMap(lambda x: x.split(" "))
datas = words.map(lambda x: (x, 1))
result = datas.reduceByKey(lambda agg, obj: agg + obj)
result.pprint()
ssc.start()
ssc.awaitTermination()
如果是本地模式同样需要指定并行度,如果是在集群中运行,必须要求集群中可用core数大于1
在flume的conf目录下新建flume-poll.conf内容如下:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/hadoop/log/flume
a1.sources.r1.fileHeader = true
# Describe the sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = localhost
a1.sinks.k1.port = 8888
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
由于是poll方式,需要的flume
bin/flume-ng agent -n a1 -c conf/ -f conf/flume-poll.conf -Dflume.root.logger=WARN,console
启动spark程序
spark/bin/spark-submit --driver-class-path /home/hadoop/spark/jars/*:/home/hadoop/jar/flume/* /tmp/pycharm_project_563/day5/FlumePollWordCount.py
同样在/home/hadoop/log/flume目录下新建log文件,将原先生成的COMPLETED文件删除,rm flume/aaa.txt.COMPLETED ,运行spark的日志中出现如下: