声明:本文来源https://blog.csdn.net/zhaomengszu/article/details/77834845,感谢作者分享,使用具体例子来理解BP更详细。
BP(back propagation)反向传播算法,基本思想:
反向传播算法是利用了神经网络的结构进行的计算,不一次计算所有参数的梯度,而是从后往前。首先计算输出层的梯度,然后是第二个参数矩阵的梯度,接着是中间层的梯度,再然后是第一个参数矩阵的梯度,最后是输入层的梯度。loss函数的目的就是计算出当前神经网络建模出来输出的数据和理想数据之间的距离。计算出loss之后,根据反向传播算法就可以更新网络中的各种参数以此使loss不断下降,即可使输出的数据更加理想。
BP神经网络就是利用误差反向传播的方法来更新神经网络权重来减小误差的网络。大家看到这个图应该不陌生:
这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,…,xn},输出也是一堆数据{y1,y2,y3,…,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来说明,包括一些变种之类的。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。
本文直接举一个例子,带入数值演示反向传播法的过程,公式的推导等到下次写Auto-Encoder的时候再写,其实也很简单,感兴趣的同学可以自己推导下试试:)(注:本文假设你已经懂得基本的神经网络构成,如果完全不懂,可以参考Poll写的笔记:[Mechine Learning & Algorithm] 神经网络基础)
假设,你有这样一个网络层:
第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。
现在对他们赋上初值,如下图:
其中,输入数据 i1=0.05,i2=0.10;
输出数据 o1=0.01,o2=0.99;
初始权重 w1=0.15,w2=0.20,w3=0.25,w4=0.30;
w5=0.40,w6=0.45,w7=0.50,w8=0.55
目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。
Step 1 前向传播
1.输入层—->隐含层:
计算神经元h1的输入加权和:
神经元h1的输出o1:(此处用到激活函数为sigmoid函数):
同理,可计算出神经元h2的输出o2:
2.隐含层—->输出层:
计算输出层神经元o1和o2的值:
这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。
Step 2 反向传播
1.计算总误差
总误差:(square error)
但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:
2.隐含层—->输出层的权值更新:
以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)
下面的图可以更直观的看清楚误差是怎样反向传播的:
现在我们来分别计算每个式子的值:
(这一步实际上就是对sigmoid函数求导,比较简单,可以自己推导一下)
最后三者相乘:
这样我们就计算出整体误差E(total)对w5的偏导值。
回过头来再看看上面的公式,我们发现:
因此,整体误差E(total)对w5的偏导公式可以写成:
如果输出层误差计为负的话,也可以写成:
最后我们来更新w5的值:
(其中,是学习速率,这里我们取0.5)
同理,可更新w6,w7,w8:
3.隐含层—->隐含层的权值更新:
方法其实与上面说的差不多,但是有个地方需要变一下,在上文计算总误差对w5的偏导时,是从out(o1)—->net(o1)—->w5,但是在隐含层之间的权值更新时,是out(h1)—->net(h1)—->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。
同理,计算出:
两者相加得到总值:
最后,三者相乘:
为了简化公式,用sigma(h1)表示隐含层单元h1的误差:
最后,更新w1的权值:
同理,额可更新w2,w3,w4的权值:
这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,在这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。迭代10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证明效果还是不错的。
代码(Python):
1 #coding:utf-8
2 import random
3 import math
4
5 #
6 # 参数解释:
7 # "pd_" :偏导的前缀
8 # "d_" :导数的前缀
9 # "w_ho" :隐含层到输出层的权重系数索引
10 # "w_ih" :输入层到隐含层的权重系数的索引
11
12 class NeuralNetwork:
13 LEARNING_RATE = 0.5
14
15 def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
16 self.num_inputs = num_inputs
17
18 self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
19 self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
20
21 self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
22 self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
23
24 def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
25 weight_num = 0
26 for h in range(len(self.hidden_layer.neurons)):
27 for i in range(self.num_inputs):
28 if not hidden_layer_weights:
29 self.hidden_layer.neurons[h].weights.append(random.random())
30 else:
31 self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
32 weight_num += 1
33
34 def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
35 weight_num = 0
36 for o in range(len(self.output_layer.neurons)):
37 for h in range(len(self.hidden_layer.neurons)):
38 if not output_layer_weights:
39 self.output_layer.neurons[o].weights.append(random.random())
40 else:
41 self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
42 weight_num += 1
43
44 def inspect(self):
45 print('------')
46 print('* Inputs: {}'.format(self.num_inputs))
47 print('------')
48 print('Hidden Layer')
49 self.hidden_layer.inspect()
50 print('------')
51 print('* Output Layer')
52 self.output_layer.inspect()
53 print('------')
54
55 def feed_forward(self, inputs):
56 hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
57 return self.output_layer.feed_forward(hidden_layer_outputs)
58
59 def train(self, training_inputs, training_outputs):
60 self.feed_forward(training_inputs)
61
62 # 1. 输出神经元的值
63 pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
64 for o in range(len(self.output_layer.neurons)):
65
66 # ∂E/∂zⱼ
67 pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
68
69 # 2. 隐含层神经元的值
70 pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
71 for h in range(len(self.hidden_layer.neurons)):
72
73 # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
74 d_error_wrt_hidden_neuron_output = 0
75 for o in range(len(self.output_layer.neurons)):
76 d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
77
78 # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
79 pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()
80
81 # 3. 更新输出层权重系数
82 for o in range(len(self.output_layer.neurons)):
83 for w_ho in range(len(self.output_layer.neurons[o].weights)):
84
85 # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
86 pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
87
88 # Δw = α * ∂Eⱼ/∂wᵢ
89 self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
90
91 # 4. 更新隐含层的权重系数
92 for h in range(len(self.hidden_layer.neurons)):
93 for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
94
95 # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
96 pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
97
98 # Δw = α * ∂Eⱼ/∂wᵢ
99 self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
100
101 def calculate_total_error(self, training_sets):
102 total_error = 0
103 for t in range(len(training_sets)):
104 training_inputs, training_outputs = training_sets[t]
105 self.feed_forward(training_inputs)
106 for o in range(len(training_outputs)):
107 total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
108 return total_error
109
110 class NeuronLayer:
111 def __init__(self, num_neurons, bias):
112
113 # 同一层的神经元共享一个截距项b
114 self.bias = bias if bias else random.random()
115
116 self.neurons = []
117 for i in range(num_neurons):
118 self.neurons.append(Neuron(self.bias))
119
120 def inspect(self):
121 print('Neurons:', len(self.neurons))
122 for n in range(len(self.neurons)):
123 print(' Neuron', n)
124 for w in range(len(self.neurons[n].weights)):
125 print(' Weight:', self.neurons[n].weights[w])
126 print(' Bias:', self.bias)
127
128 def feed_forward(self, inputs):
129 outputs = []
130 for neuron in self.neurons:
131 outputs.append(neuron.calculate_output(inputs))
132 return outputs
133
134 def get_outputs(self):
135 outputs = []
136 for neuron in self.neurons:
137 outputs.append(neuron.output)
138 return outputs
139
140 class Neuron:
141 def __init__(self, bias):
142 self.bias = bias
143 self.weights = []
144
145 def calculate_output(self, inputs):
146 self.inputs = inputs
147 self.output = self.squash(self.calculate_total_net_input())
148 return self.output
149
150 def calculate_total_net_input(self):
151 total = 0
152 for i in range(len(self.inputs)):
153 total += self.inputs[i] * self.weights[i]
154 return total + self.bias
155
156 # 激活函数sigmoid
157 def squash(self, total_net_input):
158 return 1 / (1 + math.exp(-total_net_input))
159
160
161 def calculate_pd_error_wrt_total_net_input(self, target_output):
162 return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();
163
164 # 每一个神经元的误差是由平方差公式计算的
165 def calculate_error(self, target_output):
166 return 0.5 * (target_output - self.output) ** 2
167
168
169 def calculate_pd_error_wrt_output(self, target_output):
170 return -(target_output - self.output)
171
172
173 def calculate_pd_total_net_input_wrt_input(self):
174 return self.output * (1 - self.output)
175
176
177 def calculate_pd_total_net_input_wrt_weight(self, index):
178 return self.inputs[index]
179
180
181 # 文中的例子:
182
183 nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
184 for i in range(10000):
185 nn.train([0.05, 0.1], [0.01, 0.09])
186 print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))
187
188
189 #另外一个例子,可以把上面的例子注释掉再运行一下:
190
191 # training_sets = [
192 # [[0, 0], [0]],
193 # [[0, 1], [1]],
194 # [[1, 0], [1]],
195 # [[1, 1], [0]]
196 # ]
197
198 # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
199 # for i in range(10000):
200 # training_inputs, training_outputs = random.choice(training_sets)
201 # nn.train(training_inputs, training_outputs)
202 # print(i, nn.calculate_total_error(training_sets))
文章中使用的是sigmoid激活函数,实际还有几种不同的激活函数可以选择,具体的可以参考文献[3],最后推荐一个在线演示神经网络变化的网址:http://www.emergentmind.com/neural-network,可以自己填输入输出,然后观看每一次迭代权值的变化,很好玩~如果有错误的或者不懂的欢迎留言:)
参考文献:
1.Poll的笔记:[Mechine Learning & Algorithm] 神经网络基础(http://www.cnblogs.com/maybe2030/p/5597716.html#3457159 )
2.Rachel_Zhang:http://blog.csdn.net/abcjennifer/article/details/7758797
3.http://www.cedar.buffalo.edu/%7Esrihari/CSE574/Chap5/Chap5.3-BackProp.pdf
4.https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/