LeakCanary源码分析

概述

LeakCanary是用来检测 Java 和 Android 内存泄露的工具。

LeakCanary的原理非常简单。正常情况下一个Activity在onDestroy之后就要销毁,LeakCanary做的就是在一个Activity onDestroy之后将它放在一个WeakReference中,然后将这个WeakReference关联到一个ReferenceQueue。这个ReferenceQueue的作用是,当Activity被回收的时候,系统会将其Activity对应的WeakReference对象加入到ReferenceQueue

然后我们查看ReferenceQueue是否存在WeakReference对象,如果存在说明Activity已经被回收。如果不存在,执行GC操作,再查看是否被回收。如果不存在则证明该Activity泄漏了,之后Dump出heap信息,并用haha这个开源库去分析泄漏路径。

LeakCanary的使用很简单,如下:

public class ExampleApplication extends Application {

  @Override public void onCreate() {
    super.onCreate();
    if (LeakCanary.isInAnalyzerProcess(this)) {
      // This process is dedicated to LeakCanary for heap analysis.
      // You should not init your app in this process.
      return;
    }
    LeakCanary.install(this);
    // Normal app init code...
  }
}

源码分析

install

走进install():

  public static RefWatcher install(Application application) {
    // 添加了监听器,排除了一些不需要观察的类并且完成了创建
    return refWatcher(application).listenerServiceClass(DisplayLeakService.class)
        .excludedRefs(AndroidExcludedRefs.createAppDefaults().build())
        .buildAndInstall();
  }

  /**
   * Creates a {@link RefWatcher} instance and starts watching activity references (on ICS+).
   */
  public RefWatcher buildAndInstall() {
    RefWatcher refWatcher = build();
    if (refWatcher != DISABLED) {
      LeakCanary.enableDisplayLeakActivity(context);
      // 将观察者注入进了Application中
      ActivityRefWatcher.install((Application) context, refWatcher);
    }
    return refWatcher;
  }

  public static void install(Application application, RefWatcher refWatcher) {
    new ActivityRefWatcher(application, refWatcher).watchActivities();
  }

以上代码所做的主要内容就是创建了一个Activity内存泄露的监听器,注入到了Application中。

watchActivities

然后进入watchActivities()

  public void watchActivities() {
    // Make sure you don't get installed twice.
    stopWatchingActivities();
    // 注册了一个Activity生命周期的监听器
    application.registerActivityLifecycleCallbacks(lifecycleCallbacks);
  }

  private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
      new Application.ActivityLifecycleCallbacks() {
        @Override public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
        }

        @Override public void onActivityStarted(Activity activity) {
        }

        @Override public void onActivityResumed(Activity activity) {
        }

        @Override public void onActivityPaused(Activity activity) {
        }

        @Override public void onActivityStopped(Activity activity) {
        }

        @Override public void onActivitySaveInstanceState(Activity activity, Bundle outState) {
        }

        @Override public void onActivityDestroyed(Activity activity) {
          // 当Activity销毁的时候回调refWatcher的watch()函数
          ActivityRefWatcher.this.onActivityDestroyed(activity);
        }
      };

  void onActivityDestroyed(Activity activity) {
    refWatcher.watch(activity);
  }

watch

watch()最后调用的重载函数:

  public void watch(Object watchedReference, String referenceName) {
    if (this == DISABLED) {
      return;
    }
    // 判空
    checkNotNull(watchedReference, "watchedReference");
    checkNotNull(referenceName, "referenceName");
    // 记住开始观查的时间
    final long watchStartNanoTime = System.nanoTime();
    // 随机生成一个key
    String key = UUID.randomUUID().toString();
    // 加入到一个集合中
    retainedKeys.add(key);
    // 将Activity包裹成一个弱引用对象
    final KeyedWeakReference reference =
        new KeyedWeakReference(watchedReference, key, referenceName, queue);
    // 检测内存泄露,确保Activity真的被回收
    ensureGoneAsync(watchStartNanoTime, reference);
  }

  private void ensureGoneAsync(final long watchStartNanoTime, final KeyedWeakReference reference) {
    watchExecutor.execute(new Retryable() {
      @Override public Retryable.Result run() {
        // 这个方法会在Android主线程空闲的时候执行
        return ensureGone(reference, watchStartNanoTime);
      }
    });

ensureGone

进入ensureGone():

  Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) {
    // 计算从开始观察到gc所用的时间
    long gcStartNanoTime = System.nanoTime();
    long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);
    // 清除已经进入ReferenceQueue的弱引用
    // 把已被回收的对象的key从retainedKeys移除,剩下的key都是未被回收的对象
    removeWeaklyReachableReferences();

    if (debuggerControl.isDebuggerAttached()) {
      // The debugger can create false leaks.
      return RETRY;
    }
    if (gone(reference)) {
      // 如果当前的对象已经弱可达,说明不会造成内存泄漏
      return DONE;
    }
    // 否则手动调用gc,以防止系统并没有回收,误判
    gcTrigger.runGc();
    // 清除已经进入ReferenceQueue的弱引用
    removeWeaklyReachableReferences();
    if (!gone(reference)) {
      // 内存泄露
      long startDumpHeap = System.nanoTime();
      long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);
      // dump出来heap
      File heapDumpFile = heapDumper.dumpHeap();
      if (heapDumpFile == RETRY_LATER) {
        // Could not dump the heap.
        return RETRY;
      }
      long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);
      // 去分析
      heapdumpListener.analyze(
          new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs,
              gcDurationMs, heapDumpDurationMs));
    }
    return DONE;
  }

  private boolean gone(KeyedWeakReference reference) {
    return !retainedKeys.contains(reference.key);
  }

  private void removeWeaklyReachableReferences() {
    // WeakReferences are enqueued as soon as the object to which they point to becomes weakly
    // reachable. This is before finalization or garbage collection has actually happened.
    // 在实际垃圾回收之前弱引用就会被加入ReferenceQueue队列
    KeyedWeakReference ref;
    while ((ref = (KeyedWeakReference) queue.poll()) != null) {
      retainedKeys.remove(ref.key);
    }
  }

其中gcTrigger.runGc();如何保证肯定gc呢:

public interface GcTrigger {
  GcTrigger DEFAULT = new GcTrigger() {
    @Override public void runGc() {
      // Code taken from AOSP FinalizationTest:
      // https://android.googlesource.com/platform/libcore/+/master/support/src/test/java/libcore/
      // java/lang/ref/FinalizationTester.java
      // System.gc() does not garbage collect every time. Runtime.gc() is
      // more likely to perfom a gc.
      // 触发系统gc操作
      Runtime.getRuntime().gc();
      // 通过强制限制100毫秒的时间给gc
      enqueueReferences();
      // 强制调用已经失去引用的对象的finalize方法
      System.runFinalization();
    }

    private void enqueueReferences() {
      // Hack. We don't have a programmatic way to wait for the reference queue daemon to move
      // references to the appropriate queues.
      try {
        Thread.sleep(100);
      } catch (InterruptedException e) {
        throw new AssertionError();
      }
    }
  };

  void runGc();
}

大概意思是system.gc()并不会每次都立即执行,这里从AOSP中拷贝一段GC的代码,从而保证能够进行垃圾清理工作。

后续的如何导出文件,分析,提示内存泄露并不是重点,这里省略了。

疑问

判断引用是否被回收的时候,为什么不直接使用reference.get(),是不是因为这个时候reference.get()的结果有可能不是null,但是已经加入了ReferenceQueue,证明马上就要被回收了。使用reference.get(),更加准确。

参考:
1.深入理解 Android 之 LeakCanary 源码解析
2.LeakCanary源码分析
3.译文:理解Java中的弱引用

你可能感兴趣的:(Android,Java,Android,Java,内存泄露,Leakcanary)