【LeetCode-面试算法经典-Java实现】【074-Search a 2D Matrix(搜索二维矩阵)】

【074-Search a 2D Matrix(搜索二维矩阵)】


【LeetCode-面试算法经典-Java实现】【所有题目目录索引】

原题

  Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
  Integers in each row are sorted from left to right.
  The first integer of each row is greater than the last integer of the previous row.
  For example,
  Consider the following matrix:  Given target = 3, return true.

[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]

题目大意

  给定一个二维矩阵,实现一个算法在矩阵中实现快速搜索。即给定k,在矩阵中搜索k
  矩阵中下面的性质:每一行每一列都是排好序的,每一行的第一个数都比上一行的最后一个数大。

解题思路

  解法一:先用二叉查看找算法找到数字所在的列,再用二叉查找算法找数字所在的列。找到就返回true,否则返回false。解法二:见【剑指Offer学习】【面试题3 :二维数组中的查找】

代码实现

算法实现类

public class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {

        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return false;
        }

        int row = matrix.length;
        int column = matrix[0].length;
        int low = 0;
        int high = row - 1;
        int mid = 0;

        // 找结果所在的列
        while (low <= high) {
            mid = low + (high - low) / 2;

            if (target < matrix[mid][column - 1]) {
                high = mid - 1;
            } else if (target > matrix[mid][column - 1]) {
                low = mid + 1;
            } else {
                return true;
            }
        }

        // 决定列所在的最终位置
        int targetRow = mid;
        if (matrix[mid][column - 1] < target) {
            targetRow++;
        }

        // 目标列超出,无结果
        if (targetRow >= row) {
            return false;
        }

        low = 0;
        high = column - 1;
        // 找所在的行,找到返回true,没有返回false
        while (low <= high) {
            mid = low + (high - low) / 2;

            if (target < matrix[targetRow][mid]) {
                high = mid - 1;
            } else if (target > matrix[targetRow][mid]) {
                low = mid + 1;
            } else {
                return true;
            }
        }

        return false;
    }
}

评测结果

  点击图片,鼠标不释放,拖动一段位置,释放后在新的窗口中查看完整图片。

这里写图片描述

特别说明

欢迎转载,转载请注明出处【http://blog.csdn.net/derrantcm/article/details/47142931】

你可能感兴趣的:(LeetCode,LeetCode)