- 老码农和你一起学AI:Python系列-Pandas大数据处理
chilavert318
熬之滴水穿石pandaspython
今天开始梳理一下pandas的大数据处理,在数据处理领域,Pandas凭借简洁的API和强大的功能成为Python开发者的首选工具。但当面对GB级甚至更大的数据集时,直接读取数据往往会触发“内存不足”的错误——这是因为Pandas默认将数据全部加载到内存中进行处理。此时,分块处理(Out-of-Core)技术就成为解决问题的关键。它通过将大文件拆分为小块,逐块加载并处理,最终整合结果,实现“用有限
- RAID的介绍和实战操作
一RAID的介绍RAID(RedundantAarryofIndependentDisks):廉价磁盘冗余阵列是一种通过将多个物理磁盘组合成一个逻辑单元来提高数据存储性能、可靠性或两者兼顾的技术。作用:提高性能:通过并行读写(数据分块)加速数据访问。增强容错能力:通过冗余数据(如镜像或校验)防止磁盘故障导致的数据丢失。扩展存储容量:将多个磁盘合并为更大逻辑单元。(简单说就是提高容错以及读写速率)类
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- Semantic text 就是那么强大,还附带一包( BBQ )薯片!配有可配置的分块设置和索引选项。
Elastic 中国社区官方博客
ElasticsearchAI大数据elasticsearch搜索引擎全文检索人工智能ai图搜索
作者:来自ElasticKathleenDeRusso语义文本搜索现在可以自定义,支持可配置的分块设置和索引选项,用于自定义向量量化,使semantic_text在专业用例中更强大。Elasticsearch拥有大量新功能,帮助你为你的用例构建最佳搜索解决方案。深入查看我们的示例笔记本以了解更多信息,开始免费云试用,或者立即在本地机器上体验Elastic。随着Elasticsearch8.18和9
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- 6. ETL Pipeline-SpringAI实战
起凡7
SpringAIetl嵌入式实时数据库aispring语言模型
ETLPipelineETL是提取、转换、加载的缩写,从原始的文档到数据库需要经历提取(.doc、.ppt、.xlsx等)、转换(数据结构化、清理数据、数据分块)、写入向量数据库。这个过程可以进行多种处理,确保最后的数据适合AI问答。SpringAI提供了ETL框架。它是搭建知识库框架的基石。框架介绍DocumentReader:文档读取器,读取文档,比如PDF、Word、Excel等。如:Jso
- Vulkan多线程录制Command Buffer高效指南
你一身傲骨怎能输
渲染管线CommandBuffer
文章摘要Vulkan支持多线程并行录制CommandBuffer以提升CPU效率,需遵循以下原则:每个线程使用独立CommandPool避免竞争合理分配渲染任务确保负载均衡避免线程间共享资源修改主线程统一提交所有CommandBuffer实现时需为每个线程创建独立CommandPool和CommandBuffer,任务分块后多线程并行录制,最后同步提交。注意资源隔离、同步机制及CommandPoo
- 区间求最值问题高效解决方法
东皇太星
python
对于区间求最值场景,如果区间不定长度的,可以使用稀疏表进行求解,如果区间是固定长度的,则可以使用分块的思想(与稀疏表原理类似),都是通过压缩状态个数,1关于稀疏表的原理详见:稀疏表(SparseTable,ST原理及应用场景下面是一个稀疏表的python实现classSolution:def__init__(self,nums):self.nums=numsself.init_value=-999
- 大图处理优化:低分加载、Lazy Decode 与缩放算法加速实践
观熵
影像技术全景图谱:架构调优与实战算法影像Camera
大图处理优化:低分加载、LazyDecode与缩放算法加速实践关键词:大图加载优化、LazyDecode、Region解码、缩放算法、Bitmap分块、滑动加载、内存控制、图像性能优化摘要:在相册、图片浏览器、拍摄预览和编辑器中,用户经常会处理分辨率高达上千万像素的照片(如48MP、64MP、RAW文件等),这类“大图”在加载、缩放、平移过程中容易造成内存抖动、页面卡顿甚至OOM崩溃。本篇文章将围
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- FPGA实现JPEG编码器的完整项目指南
本文还有配套的精品资源,点击获取简介:JPEG编码是一种广泛使用的数字图像压缩技术,通过在FPGA上实现该编码器,可以为嵌入式系统提供高效的图像处理。FPGA的可编程逻辑单元使其成为实现JPEG编码的理想平台。实现过程包括颜色空间转换、分块、离散余弦变换(DCT)、量化和熵编码等关键步骤。此外,testbench仿真用于验证设计的功能和性能,而资源优化确保了设计的高效性和低功耗。该实现过程需要深入
- 【Java面试】10GB,1GB内存,如何排序?
用心分享技术
Java面试题java面试
一、外部排序步骤1️⃣分块排序(分割阶段)步骤:将10GB文件分割为多个内存可容纳的小块(如每个块900MB,共约11块),避免内存溢出。逐块读取到内存,使用高效排序算法(如Collections.sort()或Arrays.sort())排序。将排序后的块写入临时文件,生成11个有序子文件。关键代码:ListsplitAndSort(Fileinput)throwsIOException{Lis
- 大文件上传类设计(OC实现)
瓜子三百克
iOS开发iosoracleobjective-c
下面我将设计一个支持断点续传、多线程上传的大文件上传类,采用Objective-C实现,考虑线程安全、数据库持久化和高效上传。设计概览类文件划分FileUploadManager.h/m-上传任务管理中心FileUploadTask.h/m-单个上传任务控制ChunkUploadOperation.h/m-分块上传操作UploadDatabaseManager.h/m-数据库操作FileChunk
- Advanced RAG:下一代检索增强生成技术详解
北辰alk
AI人工智能
文章目录一、核心演进维度二、关键技术组件1.智能检索子系统2.动态知识管理3.生成控制器三、核心增强技术1.递归检索(RecursiveRetrieval)2.假设性检索(HypotheticalDocumentEmbedding)3.自适应分块(AdaptiveChunking)四、生产级架构设计完整系统架构关键优化点五、典型应用场景1.专业领域问答系统2.企业知识中枢3.实时决策支持六、评估指
- 【LLaMA 3实战:检索增强】13、LLaMA 3+RAG精准问答系统优化全指南:从检索增强到可信度提升实战
无心水
LLaMA3模型实战专栏llamaLLaMA3对话能力全解析LLaMA3AI大模型LLaMa3实战程序员的AI开发第一课AI入门
一、RAG赋能LLaMA问答系统的核心价值与瓶颈突破(一)准确性提升的三大核心挑战问题类型典型表现传统方案局限RAG+LLaMA3解决方案知识滞后型错误回答包含过时技术细节依赖模型预训练更新动态检索最新文档库上下文误解曲解问题意图或检索内容固定分块导致语义断裂语义感知分块+动态查询扩展事实幻觉虚构不存在的概念或数据缺乏外部事实校验溯源标注+多模型交叉验证(二)RAG与LLaMA3的协同优势动态知识
- RAG 每日一技(一):你的第一步就走错了?聊聊最基础的文本分块
ezl1fe
RAG每日一技人工智能后端语言模型
前言兄弟们,最近大模型是真火啊!但光火有什么用,咱得把它用在自己的项目里,解决实际问题才算牛。于是很多人撸起袖子就开干,想让大模型能回答自己文档、知识库里的问题。理想很丰满:我扔一堆文档进去,模型“嗖”一下就学会了,然后就有问必答,跟专家一样。现实很骨感:不管怎么喂数据,模型要么回答得牛头不对马嘴,要么干脆说“我不知道”。是不是感觉很熟悉?问题到底出在哪?很多时候,问题并非出在模型本身,而是出在了
- RAG系列:提升RAG检索力:三大Query变形术,助你玩转AI知识检索!
数智前沿
数字化转型人工智能RAG
之前的帖子大多在优化向量化的过程,让文本内容分块更合理和更精准,本篇重点介绍使用RAG时如何优化提示词,以提高查询结果的精准度!一、RAG的“灵魂拷问”:你真的会提问吗?在AI时代,信息检索的效率和质量,80%取决于你“怎么问”。RAG系统的本质,就是“你问得好,我答得妙”。但现实往往是——用户提问:“AI会抢我饭碗吗?”检索系统:一脸懵逼,给你扔来一堆“AI是什么”“就业趋势”……用户:???这
- 莫队算法 —— 将暴力玩出花
秒啦
算法
莫队算法——将暴力玩出花一、为什么需要莫队?——暴力法的瓶颈我们已经学会了用分块处理一些在线的区间问题。现在,我们来看一类特殊的离线区间查询问题。“离线”意味着我们可以把所有查询先读进来,再按我们喜欢的顺序去处理它们。思考一个问题:给定一个长度为N的数组,M次询问。每次询问一个区间[l,r],问区间内有多少种数字至少出现了2次?那我们回到最朴素的暴力。纯暴力:对于每个询问(l,r),都for一遍,
- 响应式API和非响应式API
响应式API与非响应式API的核心区别在于数据流处理方式、触发机制、资源利用率以及适用场景。以下是具体对比分析:一、数据流与处理模式响应式API异步与事件驱动:数据流通过事件触发自动处理,无需手动干预。例如,当数据源(如股票价格)更新时,系统立即推送变化并触发相应的界面更新[1][8]。流式处理:支持按需分块处理数据,避免一次性加载大量数据到内存。例如,SpringWebFlux的Flux可以每秒
- 华为园区网经典三层架构配置模板(含汇聚、核心)
网络工程师俱乐部
网络网络工程师华为认证
号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部这一篇直接上华为园区网的经典三层架构配置模板,重点覆盖:核心层(双核心VRRP)汇聚层(VLAN汇聚+上联三层)接入层简要说明每层配置关键点,按模块分块直给,拎出来就能用适合小中型企业园区网部署场景,拿去直接能拉实验。场景说明&拓扑结构典型企业园区网三层架构:接入层只做VLAN接入,不三层,不配置网关汇聚层做VLAN
- 基础RAG实现,最佳入门选择(四)
人工智能
RAG中的上下文丰富检索,检索增强生成(RAG)通过从外部来源检索相关知识来增强AI响应。传统的检索方法返回孤立的文本块,这可能导致答案不完整。为了解决这个问题,引入了上下文丰富检索,它确保检索到的信息包括相邻的块以获得更好的一致性。-数据摄取:从PDF中提取文本。-带有重叠上下文的分块:将文本拆分为重叠的块以保留上下文。-嵌入创建:将文本块转换为数字表示。-上下文感知检索:检索相关块及其邻居以获
- Chonkie:一个极速且轻量级文本分块的革命者,解锁 RAG 分块多种策略
程序员笑武
prompt语言模型人工智能开源知识图谱
Chonkie是为RAG任务设计的轻量级文本分块库,以快速性能和易于使用著称,旨在解决传统文本分块库的效率和体积问题。核心特点包括多种分块器、9.7MB的轻量级安装、以及优化的分块速度。通过Tiktoken、预计算缓存等技术实现高效分块,性能远超竞争对手。本文详细介绍了Chonkie文档分割库的功能、安装方法、代码示例、设计理念、常见问题解答,助力RAG提升性能。简介Chonkie是一个用于RAG
- 无人机数据处理系统设计与难点
云卓SKYDROID
无人机高科技人工智能科普云卓科技
一、系统设计要点1.数据采集层多源传感器集成支持RGB相机、多光谱/高光谱相机、LiDAR、热成像仪、RTK/PPK定位模块等。自适应采集策略动态调整飞行高度、航速、重叠率,适应地形与任务需求。元数据绑定时间戳、GPS位置、IMU姿态角、传感器参数同步存储。2.数据传输与存储边缘端预处理实时压缩:使用H.265或JPEG2000降低传输带宽。数据分块:将大文件拆分为时空分块。混合存储架构plain
- 前端vue js 使用插件 spark-md5 计算文件MD5值并封装成Promise异步调用方法
低级前端
Vue学习Vue3学习+实战uniappjavascript前端vue.jsspark开发语言
1.依赖:需要安装spark-md5npminstall--savespark-md52.代码分析1.功能:该函数接收一个File对象,将其分块(每块2MB)读取,并使用spark-md5计算整个文件的MD5哈希值。返回一个Promise,成功时解析为MD5字符串,失败时拒绝并返回错误信息。2.关键点:分块处理:通过FileReader逐块读取文件,避免一次性加载大文件导致内存问题。兼容性:处理了
- OPENPPP2 内置 SIMD-AES-128-CFB 算法实现分析及优化路线
liulilittle
MarkdownExtensionC/C++算法网络协议AES安全密码学网络通信
引用源:OPENPPP2/simd_aes_128_cfb.cpp核心组件结构图AES-128-CFB加密系统密钥扩展CFB加密CFB解密加载初始密钥10轮密钥扩展使用aeskeygenassist字节移位与异或初始化反馈寄存器处理完整块处理部分块初始化反馈寄存器处理完整块处理部分块块加密块加密AES加密核心初始轮密钥加9轮AESENC最终轮AESENCLAST详细流程分析一、密钥扩展流程(aes
- 为 AI 编写文档:最佳实践
llm知识管理写作
Bruce:LLM时代要为AI阅读改变写作习惯。将图片/复杂排版文档转化为LLM可读格式(如Markdown)AI友好写作原则(为AI写作)1.内容清晰、结构化、显式表达2.每段内容应自包含、易分块理解3.使用统一术语,增强语义匹配4.图表信息应有文字说明5.使用语义HTML/Markdown,避免PDF、复杂UI6.内容层级清晰,上下文明确7.明确前提与步骤,不假设读者已知8.记录具体错误信息,
- Vue3组合式API深度解析:模式、实践与架构级应用
桂月二二
架构
一、组合式API设计哲学1.1响应式编程演进1.2组合式特性对比表特性选项式API组合式API优势分析代码组织按选项分块逻辑聚合高内聚低耦合类型推导有限支持完整TS支持开发体验提升60%逻辑复用Mixins混入自定义Hook降低复杂度50%生命周期固定钩子动态注册灵活度提升80%响应式追踪隐式追踪显式声明可维护性增强70%二、核心响应式机制剖析2.1响应式系统实现//简化的响应式核心实现class
- 大模型(LLMs)RAG 版面分析------文本分块面
xianghan收藏册
AI大模型人工智能transformerchatgpt自然语言处理
一、为什么需要对文本分块?使用大型语言模型(LLM)时,切勿忽略文本分块的重要性,其对处理结果的好坏有重大影响。考虑以下场景:你面临一个几百页的文档,其中充满了文字,你希望对其进行摘录和问答式处理。在这个流程中,最初的一步是提取文档的嵌入向量,但这样做会带来几个问题:信息丢失的风险:试图一次性提取整个文档的嵌入向量,虽然可以捕捉到整体的上下文,但也可能会忽略掉许多针对特定主题的重要信息,这可能会导
- 大模型(LLMs)RAG 版面分析——文本分块面
AI Echoes
mysql数据库
大模型(LLMs)RAG版面分析——文本分块面一、为什么需要对文本分块?二、能不能介绍一下常见的文本分块方法?2.1一般的文本分块方法2.2正则拆分的文本分块方法2.3SpacyTextSplitter方法2.4基于langchain的CharacterTextSplitter方法2.5基于langchain的递归字符切分方法2.6HTML文本拆分方法2.7Mrrkdown文本拆分方法2.8Pyt
- 【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)Product Quantization?
985小水博一枚呀
人工智能学习数据库算法语言模型
【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?文章目录【AI大模型学习路线】第二阶段之RAG基础与架构——第九章(向量数据库常见算法)ProductQuantization?前言1.算法原理1.1向量分块与
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st