- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- 基于通义大模型的智能客服系统构建实战:从模型微调到API部署
大熊计算机
开发实战语言模型人工智能
1引言本文将深入探讨基于通义大模型的智能客服系统构建全流程,从数据准备、模型微调、性能优化到API部署和系统集成。不同于理论概述,本文将通过实战案例、代码演示和性能数据对比,展示每个环节的技术细节与工程实践。文章面向具备Python和深度学习基础的开发者,重点解决以下核心问题:如何针对客服场景准备和优化训练数据?如何高效微调通义大模型以适配特定业务需求?如何解决大模型部署中的延迟和并发挑战?如何构
- TensorFlow:深度学习基础设施的架构哲学与工程实践革新
双囍菜菜
AI深度学习tensorflow架构
TensorFlow:深度学习基础设施的架构哲学与工程实践革新文章目录TensorFlow:深度学习基础设施的架构哲学与工程实践革新一、计算范式革命:从静态图到动态执行的深度架构剖析1.1静态计算图的编译优化体系1.2动态图模式的实现原理1.3混合执行模式的编译原理二、张量计算引擎的深度架构解析2.1运行时核心组件2.2计算图优化技术2.3分布式训练架构三、可微分编程范式的实现奥秘3.1自动微分系
- 计算机视觉与深度学习实战:以Python为工具,基于深度学习的汽车目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于深度学习的汽车目标检测
随着人工智能技术的飞速发展,计算机视觉与深度学习已经成为当今科技领域的热点。其中,汽车目标检测作为自动驾驶、智能交通等系统的核心技术,受到了广泛关注。本文将以Python为工具,探讨基于深度学习的汽车目标检测方法及其实战应用。一、计算机视觉与深度学习基础计算机视觉是研究如何让计算机从图像或视频中获取信息、理解内容并作出决策的科学。深度学习则是一种模拟人脑神经网络的机器学习技术,通过构建深层神经网络
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- 深度学习基础知识总结
1.BatchNorm2d加速收敛:BatchNormalization可以使每层的输入保持较稳定的分布(接近标准正态分布),减少梯度更新时的震荡问题,从而加快模型训练速度。减轻过拟合:批归一化引入了轻微的正则化效果,因为它依赖于mini-batch中的统计信息,这种方式可以减少对单个样本的过度拟合。提高模型性能:在训练过程中,BatchNormalization通过动态调整激活值的分布,让模型更
- 大数据最新大模型学习路线与建议:掌握大模型学习路径
大模型教程
大数据学习人工智能大模型AI大模型程序员AI
1既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新第一章深度学习基础第二章智能对话系统基础第三章大模型基础第四章大模型应用实践第五章大模型实战项目第一章深度学习基础深度学习基础深度学习经典模型解
- 深度学习模型:技术演进、热点突破与未来图景
accurater
c++算法笔记深度学习
第一章深度学习模型的技术演进1.1从感知机到深度神经网络里程碑突破:AlexNet在ImageNet竞赛中实现图像分类性能飞跃,首次验证深度卷积网络(CNN)的潜力。其采用ReLU激活函数、Dropout正则化等创新,奠定现代深度学习基础架构。梯度消失的破解:LSTM网络通过门控机制实现长时序依赖建模,为自然语言处理(NLP)开辟道路,后续双向LSTM、GRU等变体持续优化记忆能力。计算范式革新:
- 我们掌握的技能与进入企业的机会
万能小贤哥
人工智能算法深度学习
深度学习:从基础到实践一、引言深度学习是机器学习的一个分支,它通过构建多层神经网络来模拟人类大脑的信息处理方式,从而实现对复杂数据的自动特征提取和模式识别。近年来,深度学习在计算机视觉、自然语言处理、语音识别等领域取得了巨大的突破,引发了全球范围内的研究和应用热潮。本文将从深度学习的基本概念出发,逐步深入到实际应用,并结合代码示例展示如何实现一个简单的深度学习模型。二、深度学习基础(一)神经网络的
- 吴恩达深度学习课程实践项目集
Kiki-2189
本文还有配套的精品资源,点击获取简介:吴恩达深度学习编程作业包含了Coursera平台课程中的实践环节,为学员提供深度学习理论与编程技能的巩固。这些作业从基础神经网络到复杂架构,涵盖深度学习的各种关键概念和技术,使用TensorFlow进行模型构建和训练,适合作为入门深度学习的资源。1.深度学习基础与理论框架在当今的人工智能领域,深度学习以其强大的模式识别能力,已经成为了众多技术革新的核心。本章将
- YOLOv7在自定义数据集上的Jupyter Notebook训练指南
t0_54program
大数据与人工智能YOLOjupyteride个人开发
在当今的计算机视觉领域,目标检测是一项至关重要的任务,而YOLO(YouOnlyLookOnce)系列算法因其高效性和准确性备受关注。本文将详细介绍如何在JupyterNotebook环境中,利用YOLOv7模型对自定义数据集进行训练。前期准备环境与基础设置:开始之前,你需要具备一定的Python编程经验和深度学习基础知识,并且拥有一台性能足够强大的机器。若没有GPU,DigitalOceanGP
- 自然语言处理 (NLP) 学习路线
我喝AD钙
我的学习笔记自然语言处理学习人工智能
自然语言处理学习路线1.基础准备(可参考mooc学习)2.学习基础NLP技术(可参考mooc学习)3.经典机器学习算法在NLP中的应用(可参考吴恩达机器学习课程)4.深度学习基础(基础参考吴恩达、工具看TF、Keras官网手册)5.深度学习在NLP中的应用(arxiv论文原文和解析博客,实战参考gitee/github)6.现代NLP模型(arxiv论文原文和解析博客,实战参考gitee/gith
- MONAI 高级开发者研究教程专栏:从精通到引领医学影像AI创新
LIUDAN'S WORLD
MONAI高级开发者研究教程专栏人工智能
专栏导语:本专栏旨在为已有深度学习基础并希望在医学影像AI领域进行深入研究的高级开发者提供一套系统性的MONAI学习与实践指南。我们将不仅仅停留在“如何使用”,更会深入探讨“为何如此设计”以及“如何扩展与创新”,助您充分利用MONAI的强大功能,引领前沿研究。第一章MONAI基石与医学影像AI生态MONAI的设计哲学与核心架构解析:不仅仅是介绍:深入探讨MONAI诞生的背景,解决了医学影像AI的哪
- 深度学习面试八股简略速览
石去皿
学习记录经验分享深度学习人工智能
在准备深度学习面试时,你可能会感到有些不知所措。毕竟,深度学习是一个庞大且不断发展的领域,涉及众多复杂的技术和概念。但别担心,本文将为你提供一份全面的指南,从基础理论到实际应用,帮助你在面试中脱颖而出。1.深度学习基础:理解核心概念1.1神经网络基础神经网络是深度学习的核心,它由许多简单的处理单元(神经元)组成,这些神经元通过权重连接在一起。每个神经元接收输入,通过一个激活函数进行处理,然后输出结
- 【第15章:量子深度学习与未来趋势—15.2 量子深度学习模型的基础理论与实现方法探索】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习DeepSeek人工智能计算机视觉强化学习量子计算量子深度学习
还记得《三体》中智子锁死地球科技的绝望吗?今天AI领域正面临类似的困境——GPT-4训练需要消耗1.7万个NVIDIAA100GPU运行3个月,能耗相当于300个家庭一年的用电量。更可怕的是,图像识别任务的参数空间维度每增加1级,计算量就会爆炸式增长10^8倍。这时候量子计算犹如破壁者,带着量子并行计算和指数级存储空间这两把密钥,正在打开AI的降维打击时代。一、量子深度学习基础:从量子比特到量子神
- 【深度学习基础/面试高频问题】归一化-为何BN层能帮助模型优化
无敌悦悦王
面试准备基础理论深度学习人工智能计算机视觉图像处理
深度学习基础知识为何BN能够帮助训练优化1、发现问题2、BatchNorm的性能是否源于控制内部协变量偏移?3、为什么BatchNorm有效?1)BatchNorm的平滑效果2)优化景观的探索3)BatchNorm是平滑景观的最佳(唯一?)方法吗?4、理论分析5、相关工作6、结论参考文献:1、HowDoesBatchNormalizationHelpOptimization?HowDoesBatc
- 第21节:深度学习基础-激活函数比较(ReLU, Sigmoid, Tanh)
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)深度学习算法人工智能
1.引言在深度学习领域,激活函数是神经网络中至关重要的组成部分它决定了神经元是否应该被激活以及如何将输入信号转换为输出信号激活函数为神经网络引入了非线性因素,使其能够学习并执行复杂的任务没有激活函数,无论神经网络有多少层,都只能表示线性变换,极大地限制了网络的表达能力本文将深入探讨三种最常用的激活函数:ReLU(RectifiedLinearUnit)、Sigmoid和Tanh(双曲正切函数),从
- AI Python 教程
Empty-Filled
人工智能python开发语言
AIPython教程为什么使用Python学习AI?AI之Python前提AIPython教程人工智能AI之Python-机器学习监督学习回归算法分类算法非监督学习聚类算法数据降维增强学习AI之Python-深度学习深度学习基础深度学习架构AI之Python-自然语言处理文本处理和表示文本处理文本表示词汇语义学AI之Python-计算机视觉图像处理和转换图像识别架构物体检测架构两步检测器单步检测器
- 第20节:深度学习基础-反向传播算法详解
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)深度学习神经网络人工智能机器学习
一、引言反向传播算法(Backpropagation,简称BP算法)是深度学习领域最为核心的算法之一,它为神经网络提供了一种高效计算梯度的方法,使得基于梯度的优化成为可能。自20世纪80年代被重新发现并广泛应用以来,反向传播算法已经成为训练多层神经网络的标准方法,推动了深度学习革命的发展。反向传播算法的本质是链式法则(ChainRule)在神经网络中的巧妙应用,它通过从输出层向输入层反向传播误差信
- 深度学习模型:从基础到前沿的技术解析与实践指南
爱吃青菜的大力水手
深度学习人工智能
深度学习模型全面解析文章框架,结合代码演示与图形展示,内容深入浅出:深度学习模型:从基础到前沿的技术解析与实践指南第一章深度学习基础与核心思想1.1深度学习的本质与优势表示学习理论:通过多层非线性变换自动提取数据特征,无需人工设计特征(如CNN对边缘→纹理→物体的逐层抽象)与传统机器学习的对比:以ImageNet分类为例,AlexNet将Top-5错误率从26.2%降至15.3%,证明了深度学习的
- PyTorch深度学习基础/Logistic回归
Zeal Just Hurries
深度学习人工智能机器学习pytorch回归python
一、PyTorch深度学习基础1、Tensor对象及其运算Tensor对象是一个多维的数据结构,用于存储数值型数据,通常用在深度学习中进行各种计算。Tensor对象可以简单理解为一个高维数组,它是矩阵概念的扩展。在深度学习领域,特别是在使用某些框架如PyTorch或TensorFlow时,Tensor扮演着核心角色。它们不仅拥有丰富的数学属性,还内置了一些专为深度学习设计的运算,这使得Tensor
- 探索人工智能在医疗诊断中的前沿应用:深度学习助力精准医疗
Thanks_ks
IT洞察集深度学习医疗诊断医学影像识别基因组学智能辅助诊断精准医疗个性化治疗
目录引言一、深度学习基础与医疗诊断的融合1.深度学习的自适应学习能力2.特征提取的自动化与高效性3.多模态数据的融合处理4.实时诊断与远程医疗的潜力5.个性化医疗的推动二、深度学习在医学影像识别中的应用1.肿瘤检测与分类2.眼科疾病筛查3.病变识别4.脑部疾病诊断5.骨折检测与评估6.多模态影像融合分析7.自动化报告生成三、深度学习在基因组学中的应用1.精准遗传病诊断2.疾病风险预测与预防3.精准
- 深度学习基础知识-全连接层
Jul.01
深度学习人工智能神经网络
全连接(FullyConnected,简称FC)层是深度学习神经网络中一种基本的层结构。它主要用于神经网络的最后几层,将高层特征映射到输出空间中。全连接层对数据的每个输入节点与每个输出节点进行连接,用于实现输入特征和输出结果之间的映射关系。以下是对全连接层的详细解释。1.全连接层的结构和原理在全连接层中,每一个输入节点与每一个输出节点之间都有一条连接线。假设输入层有n个神经元,输出层有m个神经元,
- 深度学习基础:从入门到理解核心概念
巷955
深度学习人工智能
引言近年来,深度学习(DeepLearning)已成为人工智能领域最热门的研究方向之一。从AlphaGo战胜人类围棋冠军,到ChatGPT等大型语言模型的惊艳表现,深度学习技术正在深刻改变我们的生活和工作方式。本文将系统介绍深度学习的基础知识,帮助初学者建立对这一领域的全面认识。一、什么是深度学习?深度学习是机器学习的一个子领域,它通过模拟人脑神经元的工作方式,构建多层的神经网络模型,从数据中自动
- 深度学习基础原理知识整理
MayByte
深度学习深度学习人工智能
深度学习基础原理知识整理线性回归模型线性回归模型定义假设给定数据集(D={(x1,y1),(x2,y2),…,(xm,ym)}),其中xi=(xi1;xi2;…;xid),xi∈Rx~i~\in\mathbb{R}xi∈R。线性回归就是试图学得一个线性模型,尽可能准确地预测实际输出值。通俗地讲,即求属性与结果之间的线性关系。线性回归模型的函数表达式为:f(x)=w1x1+w2x2+⋯+wnxn+b
- 人脸识别:基于深度学习的人脸识别_(2).深度学习基础
zhubeibei168
检验检测&人脸识别深度学习人工智能开源计算机视觉人脸识别
深度学习基础引言深度学习是机器学习的一个分支,它通过构建多层神经网络来模拟人脑的结构和功能,从而实现对复杂数据模式的自动学习和识别。在计算机视觉领域,深度学习已经取得了显著的成果,尤其是在人脸识别方面。本节将介绍深度学习的基本概念、常用算法和框架,为后续的人脸识别技术打下坚实的基础。神经网络基础什么是神经网络神经网络是一种计算模型,它由大量的节点(或称为神经元)组成,这些节点通过连接形成一个网络。
- 数据处理专题(十二)
程序员的世界你不懂
数据分析百度经验分享
深度学习基础01目标了解深度学习的基本概念。02学习内容神经网络基础Keras基础实践:使用Keras构建一个简单的神经网络模型03代码示例1.导入必要的库importnumpyasnpimportpandasaspdimporttensorflowastffromtensorflow.keras.modelsimportSequentialfromtensorflow.keras.layer
- 【深度学习基础】Windows实时查看GPU显存占用、功耗、进程状态
叫我东方小巴黎
机器学习基础深度学习人工智能
1.nvitoppython环境下,例如anacondaprompt:condaenvlistactivatexxxpipinstallnvitopnvitop实时查看GPU显存占用、功耗、进程状态显示信息含义https://blog.csdn.net/Sep21m_wyy/article/details/141754651顶部信息栏当前时间:显示当前的系统时间(SatAug3116:33:032
- 【深度学习基础】PyCharm anaconda PYTorch python CUDA cuDNN 环境配置
叫我东方小巴黎
机器学习基础深度学习pythonpycharm
这里写目录标题PyCharm安装anaconda安装PYTorch安装确定python版本CUDA安装cuDNN安装检验环境是否配置成功参照:PyCharm安装官网下载anaconda安装官网下载:https://www.anaconda.com/download配置环境变量,增加D:\WorkSoftware\Install\Anaconda3D:\WorkSoftware\Install\An
- 【深度学习基础】第四十七课:BLEU得分
x-jeff
深度学习基础深度学习人工智能nlp
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.BLEU得分机器翻译的一大难题是一个法语句子可以有多种英文翻译,并且翻译质量都同样好。那么我们该怎样评估一个机器翻译系统呢?常用的一个方法就是使用BLEU得分。BLEU原文:PapineniK,RoukosS,WardT,etal.Bleu:amethodforautomaticevaluationofmachi
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&