Given an array A
of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L
and M
. (For clarification, the L
-length subarray could occur before or after the M
-length subarray.)
Formally, return the largest V
for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, or0 <= j < j + M - 1 < i < i + L - 1 < A.length
.Example 1:
Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
Output: 20
Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
Output: 29
Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
Output: 31
Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
Note:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
题目:数组A
中不重叠的两个连续子数组(长度分别为L
和M
)的最大和。
思路:参见Solution。当子串L
在M
左侧时,用l_max
表示A[0...i]
(i+M
L
的最大和,两个子数组的最大和可以表示为l_max + sum(A[i:i+M])
;当L
在M
右边时时,用m_max
表示A[0...i]
(i+L
M
的最大和,两个子数组的最大和为m_max + sum(A[i:i+L])
。取两种情况的较大值。
工程代码下载
class Solution {
public:
int maxSumTwoNoOverlap(vector<int>& A, int L, int M) {
int n = A.size();
if (n == 0)
return 0;
vector<int> sum(n);
sum[0] = A[0];
for (int i = 1; i < n; ++i) {
sum[i] = sum[i-1] + A[i];
}
int res = sum[L + M - 1];
int l_max = sum[L - 1];
for (int i = L; i < n - M; ++i) {
l_max = max(l_max, sum[i] - sum[i - L]);
res = max(res, l_max + sum[i + M] - sum[i]);
}
int m_max = sum[M - 1];
for (int i = M; i < n - L; ++i) {
m_max = max(m_max, sum[i] - sum[i - M]);
res = max(res, m_max + sum[i + L] - sum[i]);
}
return res;
}
};