原题如下:
Wooden Sticks
Time Limit: 1000MS |
|
Memory Limit: 10000K |
Total Submissions: 21590 |
|
Accepted: 9197 |
Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1 <= n <= 5000 , that represents the number of wooden sticks in the test case, and the second line contains 2n positive integers l1 , w1 , l2 , w2 ,..., ln , wn , each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3
5
4 9 5 2 2 1 3 5 1 4
3
2 2 1 1 2 2
3
1 3 2 2 3 1
Sample Output
2
1
3
思路:遇到过好几个这样的题目了。就是把序列分为x个不下降子序列,求x的最小值。
一个定理是x就等于最长下降子序列的长度。不会证明QAQ。
直接dp就好。
#include
#include
#include
#include
#include
using namespace std;
#define MAXN 5010
#define INF 1e9+7
#define MODE 1000000
#define LIMIT 100000000000000000
typedef long long ll;
int t,n;
struct woo{
int l;
int w;
}a[MAXN];
int cmp(woo a,woo b)
{
if(a.l!=b.l)
return a.la[i].w)
dp[i]=max(dp[i],dp[j]+1);
}
maxn=max(maxn,dp[i]);
}
printf("%d\n",maxn);
}
}
但这样不是最快的。因为求最长上升子序列和最长下降子序列的时候,最多有效更新只有一次。
用二分找到需要更新的位置即可、
代码如下。
#include
#include
#include
#include
#include
using namespace std;
#define MAXN 5010
#define INF 1e9+7
#define MODE 1000000
#define LIMIT 100000000000000000
typedef long long ll;
int t,n;
struct woo{
int l;
int w;
}a[MAXN];
int cmp(woo a,woo b)
{
if(a.l!=b.l)
return a.l>b.l;
else
return a.w>b.w;
}
int dp[MAXN];//最长上升子序列的计算
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=0;i