高精度加减乘运算

 在看刘汝佳的入门白书,其中提到了高精度加法,上网参考了别人的做法后,写了高精度减法,高精度乘法,但除法仍没有解决。

本例高精度范围一千位的十进制大数加减乘。

基本结构:用大数组保留大数各个位上的数

关键点:

加法:保留本位和进位,处理方法本位保留之前进位的数后,若第一个数的对应位还有数(即没有超过最高位),加对应位的数,第二个数同理;

bign是自定义结构体,最后面会给出完整结构

bign fun(bign temp)
{
               bign sum;
		sum.len = 0;

		for ( int i = 0, high = 0; high || i < max(len, temp.len); i++)
		{
			int standard = high;
			if (i < len)
			      standard += s[i];
			if (i < temp.len)
			      standard += temp.s[i];
			sum.s[sum.len++] = standard % 10;
			high = standard / 10;
		}
		return sum;
}


减法:主要是借位的问题比较麻烦,用循环找到借位点,再向后加10,但开始始终想保证位上为正。后来发现没有利用数据可以为负的特性,我们可以用对象位相减,若结果为负,对应位-1,后面一位加10,思路并不难。


	bign  ( bign temp)
	{
		bign result;
		bign high;
		bign low;
		if(this->operator>(temp)) 
		{
			high = *this;
			low = temp;
		}
		else 
		{
			high = temp;
			low = *this;
		}
		result.len = high.len;
		for ( int i = 0; i < high.len; i++)
		{
			result.s[i] += high.s[i] - low.s[i];
			if (result.s[i] < 0)
			{
				result.s[i] += 10;
				result.s[i+1]--;
			}
		}
		result.clean();
		return result;
	}

乘法:模拟手工原理列竖式,对应位要移位(不是都从个位开始的),此时对应位存的不是一位数,再按照加法的思想,除10,和10取余。这里有一点需要注意,加减法的结果位数最大限度已知,而乘法位数不定,所以输出前要把前导0除去(预先用了很大的空间,全部置0了,所以结果前有很多0)

	bign ( bign temp)
	{
		bign result;
		result.len = len + temp.len;
		for ( int i = 0; i < len; i++)
		      for ( int j = 0; j < temp.len; j++)
			    result.s[i+j] += s[i] * temp.s[j];
		for ( int i = 0; i < result.len-1; i++)
		{
			result.s[i+1] += result.s[i] / 10;
			result.s[i] = result.s[i] % 10;
		}
		result.clean();
		return result;
	}



为了方便,把它写成一个模板,其中加入了重载运算符,作用可以使大数的结构像普通数据结构一样,进行

<<      >>     +=     -=   *=   <   >   <=   >=   !=的操作

下面完整代码及测试

#include 
#include 
#include 
#define MAX 1000
using namespace std;

struct bign
{
	int len, s[MAX];
	bign()
	{
		memset(s, 0, sizeof(s));
		len = 1;
	};
	void clean()
	{
		while (len > 1 && !s[len-1])
		      len--;
	}
	bign operator = (const char *num)
	{
		len = strlen(num);
		for ( int i = 0; i < len; i++)
		      s[i] = num[len-i-1] - '0';
		return *this;
	}
	bign operator = (int num)
	{
		char s[MAX];
		sprintf(s, "%d", num);
		*this = s;
		return *this;
	}
	string str() const
	{
		string res = "";
		for ( int i = 0; i < len; i++)
		      res = (char)(s[i] + '0') + res;
		if (res == "")
		      res = "0";
		return res;
	}
	bool end()
	{
		char s[100];
		strcpy(s, str().c_str());
		if (s[0] == '0')
		      return true;
		else return false;
	}
//加法
	bign operator + (const bign &temp) const
	{
		bign sum;
		sum.len = 0;

		for ( int i = 0, high = 0; high || i < max(len, temp.len); i++)
		{
			int standard = high;
			if (i < len)
			      standard += s[i];
			if (i < temp.len)
			      standard += temp.s[i];
			sum.s[sum.len++] = standard % 10;
			high = standard / 10;
		}
		return sum;
	}
//乘法
	bign operator * (const bign &temp)
	{
		bign result;
		result.len = len + temp.len;
		for ( int i = 0; i < len; i++)
		      for ( int j = 0; j < temp.len; j++)
			    result.s[i+j] += s[i] * temp.s[j];
		for ( int i = 0; i < result.len-1; i++)
		{
			result.s[i+1] += result.s[i] / 10;
			result.s[i] = result.s[i] % 10;
		}
		result.clean();
		return result;
	}
//减法
	bign operator - (const bign &temp)
	{
		bign result;
		bign high;
		bign low;
		if(this->operator>(temp)) 
		{
			high = *this;
			low = temp;
		}
		else 
		{
			high = temp;
			low = *this;
		}
		result.len = high.len;
		for ( int i = 0; i < high.len; i++)
		{
			result.s[i] += high.s[i] - low.s[i];
			if (result.s[i] < 0)
			{
				result.s[i] += 10;
				result.s[i+1]--;
			}
		}
		result.clean();
		return result;
	}
//除法
/*	bign operator / (const bign &temp)
	{
		bign result;
		if (this->operator<(temp))
		{
			result.operator=(0);
			return result; 	
		}
		else (this)
	}
*/
	bign operator -= (const bign &temp)
	{
		*this = *this + temp;
		return *this;
	}
	bign operator += (const bign &temp)
	{
		*this = *this + temp;
		return *this;
	}
	bign operator *= (const bign &temp)
	{
		*this = *this * temp;
		return *this;
	}
	bool operator < (const bign &temp) const
	{
		if (len != temp.len)
		      return len < temp.len;
		for ( int i = len-1; i >= 0; i--)
		      if (s[i] != temp.s[i])
			    return s[i] < temp.s[i];
		return false;
	}
	bool operator > (const bign &temp) const
	{
		return temp < *this;
	}
	bool operator <= (const bign &temp) const
	{
		return !(temp < *this);
	}
	bool operator >= (const bign &temp) const
	{
		return !(*this < temp);
	}
	bool operator != (const bign &temp) const
	{
		return temp < *this || temp > *this;
	}
	bool operator == (const bign &temp) const
	{
		return !(temp < *this) && !(*this < temp);
	}
};

istream& operator >> (istream &in, bign &temp)
{
	string s;
	in >> s;
	temp = s.c_str();
	return in;
}

ostream& operator << (ostream &out, const bign &temp)
{
	out << temp.str();
	return out;
}

int main(int argc, char *argv[])
{
	bign x,y;

	while (cin >> x >> y)
	{
		cout << "x*y = " << y*x << endl;
		cout << "x+y = " << x+y << endl;
		cout << "x-y = "<< x-y << endl;
	}

	return 0;
}


第一次写高精度,此代码没有优化,比如四位分段可以节省int数组的浪费等等,还有除法的问题,留到下一篇再写

你可能感兴趣的:(算法小练)