Given an array of integers arr
and an integer target
.
You have to find two non-overlapping sub-arrays of arr
each with sum equal target
. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum.
Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.
Example 1:
Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2.
Example 2:
Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2.
Example 3:
Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6.
Example 4:
Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3.
Example 5:
Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.
Constraints:
1 <= arr.length <= 10^5
1 <= arr[i] <= 1000
1 <= target <= 10^8
思路: 这题思路有点类似 Subarray Sum Equals K , 那个题是用hashmap存prefixsum , frequency. 这里因为只要找两个subarray,所以存prefixsum和index,如果找到了sum - target代表找到一个区间,那么更新当前的dp[i], dp[i] 代表的是到目前i为止,所能得到的subarray sum和为target的length。如果dp[pre] != -1 && dp[pre] != Integer.MAX_VALUE,代表找到了两个subarray区间,更新res;
这里注意的是,prefixsum index,一定要存0, -1 在hashmap里面,是为了对应 前面X元素就是target的情况,那么length i - pre,刚好= len
class Solution {
public int minSumOfLengths(int[] arr, int target) {
if(arr == null || arr.length == 0) {
return 0;
}
//
HashMap hashmap = new HashMap();
hashmap.put(0, -1); // 为了防止,前几个数就是target和,那么算len的时候,
int n = arr.length;
int[] dp = new int[n]; // dp里面存,到目前i为止的,和为target的最小的length;
int sum = 0;
int res = Integer.MAX_VALUE;
for(int i = 0; i < n; i++) {
sum += arr[i];
dp[i] = i > 0 ? dp[i - 1] : Integer.MAX_VALUE;
if(hashmap.containsKey(sum - target)) {
int pre = hashmap.get(sum - target);
// 更新当前的和为target的最小值;
dp[i] = Math.min(dp[i], i - pre);
// if we find 2 subarry;
// if pre equals -1 means we only get one sub-array whoes sum eqauls target
if(pre != -1 && dp[pre] != Integer.MAX_VALUE) {
res = Math.min(res, dp[pre] + i - pre);
}
}
hashmap.put(sum, i);
}
return res == Integer.MAX_VALUE ? -1: res;
}
}