内部排序:
指将需要处理的所有数据都加载到内部存储器中进行排序。
外部排序法:
数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。
冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒。
public class BubbleSort {
public static void main(String[] args) {
// int arr[] = {3, 9, -1, 10, 20};
//
// System.out.println("排序前");
// System.out.println(Arrays.toString(arr));
//为了容量理解,我们把冒泡排序的演变过程,给大家展示
//测试一下冒泡排序的速度O(n^2), 给80000个数据,测试
//创建要给80000个的随机的数组
int[] arr = new int[80000];
for(int i =0; i < 80000;i++) {
arr[i] = (int)(Math.random() * 8000000); //生成一个[0, 8000000) 数
}
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
//测试冒泡排序
bubbleSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序后的时间是=" + date2Str);
//System.out.println("排序后");
//System.out.println(Arrays.toString(arr));
/*
// 第二趟排序,就是将第二大的数排在倒数第二位
for (int j = 0; j < arr.length - 1 - 1 ; j++) {
// 如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
System.out.println("第二趟排序后的数组");
System.out.println(Arrays.toString(arr));
// 第三趟排序,就是将第三大的数排在倒数第三位
for (int j = 0; j < arr.length - 1 - 2; j++) {
// 如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
System.out.println("第三趟排序后的数组");
System.out.println(Arrays.toString(arr));
// 第四趟排序,就是将第4大的数排在倒数第4位
for (int j = 0; j < arr.length - 1 - 3; j++) {
// 如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
System.out.println("第四趟排序后的数组");
System.out.println(Arrays.toString(arr)); */
}
// 将前面额冒泡排序算法,封装成一个方法
public static void bubbleSort(int[] arr) {
// 冒泡排序 的时间复杂度 O(n^2), 自己写出
int temp = 0; // 临时变量
boolean flag = false; // 标识变量,表示是否进行过交换
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
// 如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
flag = true;
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
//System.out.println("第" + (i + 1) + "趟排序后的数组");
//System.out.println(Arrays.toString(arr));
if (!flag) { // 在一趟排序中,一次交换都没有发生过
break;
} else {
flag = false; // 重置flag!!!, 进行下次判断
}
}
}
}
选择排序(select sorting)也是一种简单的排序方法。它的基本思想是:第一次从arr[0]arr[n-1]中选取最小值,与arr[0]交换,第二次从arr[1]arr[n-1]中选取最小值,与arr[1]交换,第三次从arr[2]arr[n-1]中选取最小值,与arr[2]交换,…,第i次从arr[i-1]arr[n-1]中选取最小值,与arr[i-1]交换,…, 第n-1次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。
//选择排序
public class SelectSort {
public static void main(String[] args) {
//int [] arr = {101, 34, 119, 1, -1, 90, 123};
//创建要给80000个的随机的数组
int[] arr = new int[80000];
for (int i = 0; i < 80000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
//System.out.println(Arrays.toString(arr));
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
selectSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("排序后");
//System.out.println(Arrays.toString(arr));
}
//选择排序
public static void selectSort(int[] arr) {
//在推导的过程,我们发现了规律,因此,可以使用for来解决
//选择排序时间复杂度是 O(n^2)
for (int i = 0; i < arr.length - 1; i++) {
int minIndex = i;
int min = arr[i];
for (int j = i + 1; j < arr.length; j++) {
if (min > arr[j]) { // 说明假定的最小值,并不是最小
min = arr[j]; // 重置min
minIndex = j; // 重置minIndex
}
}
// 将最小值,放在arr[0], 即交换
if (minIndex != i) {
arr[minIndex] = arr[i];
arr[i] = min;
}
//System.out.println("第"+(i+1)+"轮后~~");
//System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
}
/*
//使用逐步推导的方式来,讲解选择排序
//第1轮
//原始的数组 : 101, 34, 119, 1
//第一轮排序 : 1, 34, 119, 101
//算法 先简单--》 做复杂, 就是可以把一个复杂的算法,拆分成简单的问题-》逐步解决
//第1轮
int minIndex = 0;
int min = arr[0];
for(int j = 0 + 1; j < arr.length; j++) {
if (min > arr[j]) { //说明假定的最小值,并不是最小
min = arr[j]; //重置min
minIndex = j; //重置minIndex
}
}
//将最小值,放在arr[0], 即交换
if(minIndex != 0) {
arr[minIndex] = arr[0];
arr[0] = min;
}
System.out.println("第1轮后~~");
System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
//第2轮
minIndex = 1;
min = arr[1];
for (int j = 1 + 1; j < arr.length; j++) {
if (min > arr[j]) { // 说明假定的最小值,并不是最小
min = arr[j]; // 重置min
minIndex = j; // 重置minIndex
}
}
// 将最小值,放在arr[0], 即交换
if(minIndex != 1) {
arr[minIndex] = arr[1];
arr[1] = min;
}
System.out.println("第2轮后~~");
System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
//第3轮
minIndex = 2;
min = arr[2];
for (int j = 2 + 1; j < arr.length; j++) {
if (min > arr[j]) { // 说明假定的最小值,并不是最小
min = arr[j]; // 重置min
minIndex = j; // 重置minIndex
}
}
// 将最小值,放在arr[0], 即交换
if (minIndex != 2) {
arr[minIndex] = arr[2];
arr[2] = min;
}
System.out.println("第3轮后~~");
System.out.println(Arrays.toString(arr));// 1, 34, 101, 119 */
}
}
把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表。
public class InsertSort {
public static void main(String[] args) {
//int[] arr = {101, 34, 119, 1, -1, 89};
// 创建要给80000个的随机的数组
int[] arr = new int[80000];
for (int i = 0; i < 80000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("插入排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
insertSort(arr); //调用插入排序算法
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println(Arrays.toString(arr));
}
//插入排序
public static void insertSort(int[] arr) {
int insertVal = 0;
int insertIndex = 0;
//使用for循环来把代码简化
for(int i = 1; i < arr.length; i++) {
//定义待插入的数
insertVal = arr[i];
insertIndex = i - 1; // 即arr[1]的前面这个数的下标
// 给insertVal 找到插入的位置
// 说明
// 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
// 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
// 3. 就需要将 arr[insertIndex] 后移
while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
insertIndex--;
}
// 当退出while循环时,说明插入的位置找到, insertIndex + 1
// 举例:理解不了,我们一会 debug
//这里我们判断是否需要赋值
if(insertIndex + 1 != i) {
arr[insertIndex + 1] = insertVal;
}
//System.out.println("第"+i+"轮插入");
//System.out.println(Arrays.toString(arr));
}
/*
//使用逐步推导的方式来讲解,便利理解
//第1轮 {101, 34, 119, 1}; => {34, 101, 119, 1}
//{101, 34, 119, 1}; => {101,101,119,1}
//定义待插入的数
int insertVal = arr[1];
int insertIndex = 1 - 1; //即arr[1]的前面这个数的下标
//给insertVal 找到插入的位置
//说明
//1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
//2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
//3. 就需要将 arr[insertIndex] 后移
while(insertIndex >= 0 && insertVal < arr[insertIndex] ) {
arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
insertIndex--;
}
//当退出while循环时,说明插入的位置找到, insertIndex + 1
//举例:理解不了,我们一会 debug
arr[insertIndex + 1] = insertVal;
System.out.println("第1轮插入");
System.out.println(Arrays.toString(arr));
//第2轮
insertVal = arr[2];
insertIndex = 2 - 1;
while(insertIndex >= 0 && insertVal < arr[insertIndex] ) {
arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
insertIndex--;
}
arr[insertIndex + 1] = insertVal;
System.out.println("第2轮插入");
System.out.println(Arrays.toString(arr));
//第3轮
insertVal = arr[3];
insertIndex = 3 - 1;
while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
insertIndex--;
}
arr[insertIndex + 1] = insertVal;
System.out.println("第3轮插入");
System.out.println(Arrays.toString(arr)); */
}
}
简单插入排序存在的问题
我们看简单的插入排序可能存在的问题.
数组 arr = {2,3,4,5,6,1} 这时需要插入的数 1(最小), 这样的过程是:
{2,3,4,5,6,6}
{2,3,4,5,5,6}
{2,3,4,4,5,6}
{2,3,3,4,5,6}
{2,2,3,4,5,6}
{1,2,3,4,5,6}
结论:当需要插入的数是较小的数时,后移的次数明显增多,对效率有影响.
希尔排序法介绍
希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序。
希尔排序法基本思想
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止
public class ShellSort {
public static void main(String[] args) {
//int[] arr = { 8, 9, 1, 7, 2, 3, 5, 4, 6, 0 };
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
//shellSort(arr); //交换式
shellSort2(arr);//移位方式
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println(Arrays.toString(arr));
}
// 使用逐步推导的方式来编写希尔排序
// 希尔排序时, 对有序序列在插入时采用交换法,
// 思路(算法) ===> 代码
public static void shellSort(int[] arr) {
int temp = 0;
int count = 0;
// 根据前面的逐步分析,使用循环处理
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
for (int i = gap; i < arr.length; i++) {
// 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
for (int j = i - gap; j >= 0; j -= gap) {
// 如果当前元素大于加上步长后的那个元素,说明交换
if (arr[j] > arr[j + gap]) {
temp = arr[j];
arr[j] = arr[j + gap];
arr[j + gap] = temp;
}
}
}
//System.out.println("希尔排序第" + (++count) + "轮 =" + Arrays.toString(arr));
}
/*
// 希尔排序的第1轮排序
// 因为第1轮排序,是将10个数据分成了 5组
for (int i = 5; i < arr.length; i++) {
// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
for (int j = i - 5; j >= 0; j -= 5) {
// 如果当前元素大于加上步长后的那个元素,说明交换
if (arr[j] > arr[j + 5]) {
temp = arr[j];
arr[j] = arr[j + 5];
arr[j + 5] = temp;
}
}
}
System.out.println("希尔排序1轮后=" + Arrays.toString(arr));//
// 希尔排序的第2轮排序
// 因为第2轮排序,是将10个数据分成了 5/2 = 2组
for (int i = 2; i < arr.length; i++) {
// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
for (int j = i - 2; j >= 0; j -= 2) {
// 如果当前元素大于加上步长后的那个元素,说明交换
if (arr[j] > arr[j + 2]) {
temp = arr[j];
arr[j] = arr[j + 2];
arr[j + 2] = temp;
}
}
}
System.out.println("希尔排序2轮后=" + Arrays.toString(arr));//
// 希尔排序的第3轮排序
// 因为第3轮排序,是将10个数据分成了 2/2 = 1组
for (int i = 1; i < arr.length; i++) {
// 遍历各组中所有的元素(共5组,每组有2个元素), 步长5
for (int j = i - 1; j >= 0; j -= 1) {
// 如果当前元素大于加上步长后的那个元素,说明交换
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
System.out.println("希尔排序3轮后=" + Arrays.toString(arr));//
*/
}
//对交换式的希尔排序进行优化->移位法
public static void shellSort2(int[] arr) {
// 增量gap, 并逐步的缩小增量
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
// 从第gap个元素,逐个对其所在的组进行直接插入排序
for (int i = gap; i < arr.length; i++) {
int j = i;
int temp = arr[j];
if (arr[j] < arr[j - gap]) {
while (j - gap >= 0 && temp < arr[j - gap]) {
//移动
arr[j] = arr[j-gap];
j -= gap;
}
//当退出while后,就给temp找到插入的位置
arr[j] = temp;
}
}
}
}
}
快速排序法介绍:
**快速排序(Quicksort)是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列.
public class QuickSort {
public static void main(String[] args) {
//int[] arr = {-9,78,0,23,-567,70, -1,900, 4561};
//测试快排的执行速度
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
quickSort(arr, 0, arr.length-1);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("arr=" + Arrays.toString(arr));
}
public static void quickSort(int[] arr,int left, int right) {
int l = left; //左下标
int r = right; //右下标
//pivot 中轴值
int pivot = arr[(left + right) / 2];
int temp = 0; //临时变量,作为交换时使用
//while循环的目的是让比pivot 值小放到左边
//比pivot 值大放到右边
while( l < r) {
//在pivot的左边一直找,找到大于等于pivot值,才退出
while( arr[l] < pivot) {
l += 1;
}
//在pivot的右边一直找,找到小于等于pivot值,才退出
while(arr[r] > pivot) {
r -= 1;
}
//如果l >= r说明pivot 的左右两的值,已经按照左边全部是
//小于等于pivot值,右边全部是大于等于pivot值
if( l >= r) {
break;
}
//交换
temp = arr[l];
arr[l] = arr[r];
arr[r] = temp;
//如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移
if(arr[l] == pivot) {
r -= 1;
}
//如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移
if(arr[r] == pivot) {
l += 1;
}
}
// 如果 l == r, 必须l++, r--, 否则为出现栈溢出
if (l == r) {
l += 1;
r -= 1;
}
//向左递归
if(left < r) {
quickSort(arr, left, r);
}
//向右递归
if(right > l) {
quickSort(arr, l, right);
}
}
}
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
归并排序思想示意图1-基本思想:
归并排序思想示意图2-合并相邻有序子序列:
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤
public class MergetSort {
public static void main(String[] args) {
//int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 }; //
//测试快排的执行速度
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
int temp[] = new int[arr.length]; //归并排序需要一个额外空间
mergeSort(arr, 0, arr.length - 1, temp);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("归并排序后=" + Arrays.toString(arr));
}
//分+合方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if(left < right) {
int mid = (left + right) / 2; //中间索引
//向左递归进行分解
mergeSort(arr, left, mid, temp);
//向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
//合并
merge(arr, left, mid, right, temp);
}
}
//合并的方法
/**
*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; // 初始化i, 左边有序序列的初始索引
int j = mid + 1; //初始化j, 右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引
//(一)
//先把左右两边(有序)的数据按照规则填充到temp数组
//直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) {//继续
//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
//即将左边的当前元素,填充到 temp数组
//然后 t++, i++
if(arr[i] <= arr[j]) {
temp[t] = arr[i];
t += 1;
i += 1;
} else { //反之,将右边有序序列的当前元素,填充到temp数组
temp[t] = arr[j];
t += 1;
j += 1;
}
}
//(二)
//把有剩余数据的一边的数据依次全部填充到temp
while( i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[i];
t += 1;
i += 1;
}
while( j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
t += 1;
j += 1;
}
//(三)
//将temp数组的元素拷贝到arr
//注意,并不是每次都拷贝所有
t = 0;
int tempLeft = left; //
//第一次合并 tempLeft = 0 , right = 1 // tempLeft = 2 right = 3 // tL=0 ri=3
//最后一次 tempLeft = 0 right = 7
while(tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
}
1)基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
2)将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
public class RadixSort {
public static void main(String[] args) {
int arr[] = { 53, 3, 542, 748, 14, 214};
// 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G
// int[] arr = new int[8000000];
// for (int i = 0; i < 8000000; i++) {
// arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
// }
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
radixSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
System.out.println("基数排序后 " + Arrays.toString(arr));
}
//基数排序方法
public static void radixSort(int[] arr) {
//根据前面的推导过程,我们可以得到最终的基数排序代码
//1. 得到数组中最大的数的位数
int max = arr[0]; //假设第一数就是最大数
for(int i = 1; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
//得到最大数是几位数
int maxLength = (max + "").length();
//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
//说明
//1. 二维数组包含10个一维数组
//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
//3. 名明确,基数排序是使用空间换时间的经典算法
int[][] bucket = new int[10][arr.length];
//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
//可以这里理解
//比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数
int[] bucketElementCounts = new int[10];
//这里我们使用循环将代码处理
for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
for(int j = 0; j < arr.length; j++) {
//取出每个元素的对应位的值
int digitOfElement = arr[j] / n % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
int index = 0;
//遍历每一桶,并将桶中是数据,放入到原数组
for(int k = 0; k < bucketElementCounts.length; k++) {
//如果桶中,有数据,我们才放入到原数组
if(bucketElementCounts[k] != 0) {
//循环该桶即第k个桶(即第k个一维数组), 放入
for(int l = 0; l < bucketElementCounts[k]; l++) {
//取出元素放入到arr
arr[index++] = bucket[k][l];
}
}
//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
//System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
}
/*
//第1轮(针对每个元素的个位进行排序处理)
for(int j = 0; j < arr.length; j++) {
//取出每个元素的个位的值
int digitOfElement = arr[j] / 1 % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
int index = 0;
//遍历每一桶,并将桶中是数据,放入到原数组
for(int k = 0; k < bucketElementCounts.length; k++) {
//如果桶中,有数据,我们才放入到原数组
if(bucketElementCounts[k] != 0) {
//循环该桶即第k个桶(即第k个一维数组), 放入
for(int l = 0; l < bucketElementCounts[k]; l++) {
//取出元素放入到arr
arr[index++] = bucket[k][l];
}
}
//第l轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));
//==========================================
//第2轮(针对每个元素的十位进行排序处理)
for (int j = 0; j < arr.length; j++) {
// 取出每个元素的十位的值
int digitOfElement = arr[j] / 10 % 10; //748 / 10 => 74 % 10 => 4
// 放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
index = 0;
// 遍历每一桶,并将桶中是数据,放入到原数组
for (int k = 0; k < bucketElementCounts.length; k++) {
// 如果桶中,有数据,我们才放入到原数组
if (bucketElementCounts[k] != 0) {
// 循环该桶即第k个桶(即第k个一维数组), 放入
for (int l = 0; l < bucketElementCounts[k]; l++) {
// 取出元素放入到arr
arr[index++] = bucket[k][l];
}
}
//第2轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));
//第3轮(针对每个元素的百位进行排序处理)
for (int j = 0; j < arr.length; j++) {
// 取出每个元素的百位的值
int digitOfElement = arr[j] / 100 % 10; // 748 / 100 => 7 % 10 = 7
// 放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
index = 0;
// 遍历每一桶,并将桶中是数据,放入到原数组
for (int k = 0; k < bucketElementCounts.length; k++) {
// 如果桶中,有数据,我们才放入到原数组
if (bucketElementCounts[k] != 0) {
// 循环该桶即第k个桶(即第k个一维数组), 放入
for (int l = 0; l < bucketElementCounts[k]; l++) {
// 取出元素放入到arr
arr[index++] = bucket[k][l];
}
}
//第3轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr)); */
}
}
计数排序不是一个比较排序算法,是利用数组下标来确定元素的正确位置,该算法于1954年由 Harold H. Seward提出,通过计数将时间复杂度降到了
O(N)
。
以数组
A = {101,109,107,103,108,102,103,110,107,103}
为例。第一步:找出数组中的最大值
max
、最小值min
。第二步:创建一个新数组
count
,其长度是max-min加1,其元素默认值都为0。第三步:遍历原数组中的元素,以原数组中的元素作为
count
数组的索引,以原数组中的元素出现次数作为count
数组的元素值。
第四步:对count
数组变形,新元素的值是前面元素累加之和的值,即count[i+1] = count[i+1] + count[i];
。
第五步:创建结果数组result
,长度和原始数组一样。第六步:遍历原始数组中的元素,当前元素A[j]减去最小值
min
,作为索引,在计数数组中找到对应的元素值count[A[j]-min]
,再将count[A[j]-min]的值减去1,就是A[j]
在结果数组result
中的位置,做完上述这些操作,count[A[j]-min]
自减1。是不是对第四步和第六步有疑问?为什么要这样操作?
第四步操作,是让计数数组
count
存储的元素值,等于原始数组中相应整数的最终排序位置,即计算原始数组中的每个数字在结果数组中处于的位置。比如索引值为9的
count[9]
,它的元素值为10,而索引9对应的原始数组A
中的元素为9+101=110(要补上最小值min
,才能还原),即110在排序后的位置是第10位,即result[9] = 110,排完后count[9]
的值需要减1,count[9]
变为9。再比如索引值为6的
count[6]
,他的元素值为7,而索引6对应的原始数组A
中的元素为6+101=107,即107在排序后的位置是第7位,即result[6] = 107
,排完后count[6]
的值需要减1,count[6]
变为6。如果索引值继续为6,在经过上一次的排序后,
count[6]
的值变成了6,即107在排序后的位置是第6位,即result[5] = 107
,排完后count[6]
的值需要减1,count[6]
变为5。至于第六步操作,就是为了找到A中的当前元素在结果数组
result
中排第几位,也就达到了排序的目的。
public int[] countSort2(int[] A) {
// 1、找出数组A中的最大值、最小值
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int num : A) {
max = Math.max(max, num);
min = Math.min(min, num);
}
// 初始化计数数组count
///2、长度为最大值减最小值加1
int[] count = new int[max-min+1];
///3、对计数数组各元素赋值
for (int num : A) {
// A中的元素要减去最小值,再作为新索引
count[num-min]++;
}
// 4、计数数组变形,新元素的值是前面元素累加之和的值
for (int i=1; i<count.length; i++) {
count[i] += count[i-1];
}
///5、创建结果数组
int[] result = new int[A.length];
///6、遍历A中的元素,填充到结果数组中去
for (int j=0; j<A.length; j++) {
result[count[A[j]-min]-1] = A[j];
count[A[j]-min]--;
}
return result;
}
堆排序基本介绍
1)堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种**选择排序,**它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
2)堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
3)每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
1)将待排序序列构造成一个大顶堆
2)此时,整个序列的最大值就是堆顶的根节点。
3)将其与末尾元素进行交换,此时末尾就为最大值。
4)然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
package com.peidan.sort;
/**
* @Author: tianxiaopei
* @Description:
* @Date: Create in 10:20 2020/5/10
*/
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
public class HeadSort {
public static void main(String[] args) {
//要求将数组进行升序排序
//int arr[] = {4, 6, 8, 5, 9};
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int)(Math.random()*80000000);
}
//Date date = new Date();
//SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
//System.out.println("排序前的时间是="+sdf.format(date));
Long start = System.currentTimeMillis();
System.out.println("排序前的时间是="+start);
heapSort(arr);
Long end = System.currentTimeMillis();
System.out.println("排序后的时间是="+System.currentTimeMillis());
System.out.println("排序总时间="+(end-start));//2659
//Date date1 = new Date();
//System.out.println("排序前的时间是="+sdf.format(date1));
//heapSort(arr);
//System.out.println("排序后=" + Arrays.toString(arr));
}
//编写一个堆排序的方法
public static void heapSort(int arr[]) {
int temp = 0;
System.out.println("堆排序!!");
// //分步完成
// adjustHeap(arr, 1, arr.length);
// System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//
// adjustHeap(arr, 0, arr.length);
// System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
//完成我们最终代码
//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
for (int i = arr.length/2-1;i>=0;i--){
adjustHeap(arr,i,arr.length);
}
/*
* 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
*/
for (int j=arr.length-1;j>0;j--){
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr,0,j);
}
//System.out.println("数组=" + Arrays.toString(arr));
}
//将一个数组(二叉树), 调整成一个大顶堆
/**
* 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
* 举例 int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
* 如果我们再次调用 adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
*
* @param arr 待调整的数组
* @param i 表示非叶子结点在数组中索引
* @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
*/
public static void adjustHeap(int arr[], int i, int lenght) {
int temp = arr[i];//先取出当前元素的值,保存在临时变量
//开始调整
//说明
//1. k = i * 2 + 1 k 是 i结点的左子结点
for (int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
if (k + 1 < lenght && arr[k] < arr[k + 1]) {//说明左子结点的值小于右子结点的值
k++;//k 指向右子结点
}
if (arr[k] > temp) {//如果子结点大于父结点
arr[i] = arr[k];//把较大的值赋给当前结点
i = k;//!!! i 指向 k,继续循环比较
} else {
break;
}
}
//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
arr[i] = temp;
}
}
相关术语解释:
1)稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
2)不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
3)内排序:所有排序操作都在内存中完成;
4)外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
5)时间复杂度: 一个算法执行所耗费的时间。
6)空间复杂度:运行完一个程序所需内存的大小。
7)n: 数据规模
8)k: “桶”的个数
9)In-place: 不占用额外内存