贪婪投影 greedy projection

http://blog.csdn.net/xuezhisdc/article/details/51034272


通过本教程,我们将会学会:

  • 如果通过贪婪三角投影算法进行三维点云重构。
  • 程序支持两种文件格式:*.pcd*.ply
  • 程序先读取点云文件;然后计算法向量,并将法向量和点云坐标放在一起;接着使用贪婪三角投影算法进行重构,最后显示结果。

操作

  • 在VS2010 中新建一个文件 recon_greedyProjection.cpp,然后将下面的代码复制到文件中。
  • 参照之前的文章,配置项目的属性。设置包含目录和库目录和附加依赖项。
/*
* GreedyProjection是根据点云进行三角化,而 poisson 则是对water-tight的模型进行重建,
* 所以形成了封闭mesh和很多冗余信息,需要对poisson的重建进行修剪才能得到相对正确的模型
*
*/

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

int main (int argc, char** argv)
{
    // 确定文件格式
    char tmpStr[100];
    strcpy(tmpStr,argv[1]);
    char* pext = strrchr(tmpStr, '.');
    std::string extply("ply");
    std::string extpcd("pcd");
    if(pext){
        *pext='\0';
        pext++;
    }
    std::string ext(pext);
    //如果不支持文件格式,退出程序
    if (!((ext == extply)||(ext == extpcd))){
        std::cout << "文件格式不支持!" << std::endl;
        std::cout << "支持文件格式:*.pcd和*.ply!" << std::endl;
        return(-1);
    }

    //根据文件格式选择输入方式
  pcl::PointCloud::Ptr cloud(new pcl::PointCloud) ; //创建点云对象指针,用于存储输入
    if (ext == extply){
        if (pcl::io::loadPLYFile(argv[1] , *cloud) == -1){
            PCL_ERROR("Could not read ply file!\n") ;
            return -1;
        }
    }
    else{
        if (pcl::io::loadPCDFile(argv[1] , *cloud) == -1){
            PCL_ERROR("Could not read pcd file!\n") ;
            return -1;
        }
    }

  // 估计法向量
  pcl::NormalEstimation n;
  pcl::PointCloud::Ptr normals (new pcl::PointCloud);
  pcl::search::KdTree::Ptr tree (new pcl::search::KdTree);
  tree->setInputCloud (cloud);
  n.setInputCloud (cloud);
  n.setSearchMethod (tree);
  n.setKSearch (20);
  n.compute (*normals); //计算法线,结果存储在normals中
  //* normals 不能同时包含点的法向量和表面的曲率

  //将点云和法线放到一起
  pcl::PointCloud::Ptr cloud_with_normals (new pcl::PointCloud);
  pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
  //* cloud_with_normals = cloud + normals

  //创建搜索树
  pcl::search::KdTree::Ptr tree2 (new pcl::search::KdTree);
  tree2->setInputCloud (cloud_with_normals);

  //初始化GreedyProjectionTriangulation对象,并设置参数
  pcl::GreedyProjectionTriangulation gp3;
    //创建多变形网格,用于存储结果
  pcl::PolygonMesh triangles;

  //设置GreedyProjectionTriangulation对象的参数
    //第一个参数影响很大
  gp3.setSearchRadius (1.5f); //设置连接点之间的最大距离(最大边长)用于确定k近邻的球半径【默认值 0】
  gp3.setMu (2.5f); //设置最近邻距离的乘子,以得到每个点的最终搜索半径【默认值 0】
  gp3.setMaximumNearestNeighbors (100); //设置搜索的最近邻点的最大数量
  gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees(pi)最大平面角
  gp3.setMinimumAngle(M_PI/18); // 10 degrees 每个三角的最小角度
  gp3.setMaximumAngle(2*M_PI/3); // 120 degrees 每个三角的最大角度
  gp3.setNormalConsistency(false); //如果法向量一致,设置为true

  //设置搜索方法和输入点云
  gp3.setInputCloud(cloud_with_normals);
  gp3.setSearchMethod(tree2);

    //执行重构,结果保存在triangles中
  gp3.reconstruct (triangles);

    //保存网格图
    pcl::io::savePLYFile("result.ply", triangles);

  // Additional vertex information
  //std::vector parts = gp3.getPartIDs();
  //std::vector states = gp3.getPointStates();

    // 显示结果图
  boost::shared_ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0); //设置背景
  viewer->addPolygonMesh(triangles,"my"); //设置显示的网格
  viewer->addCoordinateSystem (1.0); //设置坐标系
  viewer->initCameraParameters ();
  while (!viewer->wasStopped ()){
    viewer->spinOnce (100);
    boost::this_thread::sleep (boost::posix_time::microseconds (100000));
  }

  return (0);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 重新生成项目。
  • 到改项目的Debug目录下,按住Shift,同时点击鼠标右键,在当前窗口打开CMD窗口。
  • 在命令行中输入recon_greedyProjection.exe bunny.points.ply,执行程序。得到如下图所示的结果。 
    贪婪投影 greedy projection_第1张图片

你可能感兴趣的:(PCL)