2020年春季学期信号与系统课程作业参考答案-第十二次作业

信号与系统第十二次作业参考答案
 

2020年春季学期信号与系统课程作业参考答案-第十二次作业_第1张图片

 

※ 第一题


利用Laplace变换求解下列微分方程:
(1) d 2 d t 2 y ( t ) + 2 d d t y ( t ) + y ( t ) = δ ( t ) + 2 δ ′ ( t ) {{d^2 } \over {dt^2 }}y\left( t \right) + 2{d \over {dt}}y\left( t \right) + y\left( t \right) = \delta \left( t \right) + 2\delta '\left( t \right) dt2d2y(t)+2dtdy(t)+y(t)=δ(t)+2δ(t)
y ( 0 − ) = 1 ,     y ′ ( 0 − ) = 2 y\left( {0_ - } \right) = 1,\,\,\,y'\left( {0_ - } \right) = 2 y(0)=1,y(0)=2
(2) d 2 d t 2 y ( t ) + 5 d d t y ( t ) + 6 y ( t ) = 3 x ( t ) {{d^2 } \over {dt^2 }}y\left( t \right) + 5{d \over {dt}}y\left( t \right) + 6y\left( t \right) = 3x\left( t \right) dt2d2y(t)+5dtdy(t)+6y(t)=3x(t)
x ( t ) = e − t u ( t ) ,     y ( 0 − ) = 0 ,    y ′ ( 0 − ) = 1 x\left( t \right) = e^{ - t} u\left( t \right),\,\,\,y\left( {0_ - } \right) = 0,\,\,y'\left( {0_ - } \right) = 1 x(t)=etu(t),y(0)=0,y(0)=1


■ 求解:

(1)解答: 对微分方程两边进行Laplace变换,根据Laplace变换的微分定理,可将系统的初始条件代入方程:
s 2 Y ( s ) − s y ( 0 − ) − y ′ ( 0 − ) + 2 [ s Y ( s ) − y ( 0 − ) ] + Y ( s ) = 1 + 2 s s^2 Y\left( s \right) - sy\left( {0_ - } \right) - y'\left( {0_ - } \right) + 2\left[ {sY\left( s \right) - y\left( {0_ - } \right)} \right] + Y\left( s \right) = 1 + 2s s2Y(s)sy(0)y(0)+2[sY(s)y(0)]+Y(s)=1+2s

s 2 Y ( s ) − s − 2 + 2 [ s Y ( s ) − 1 ] + Y ( s ) = 1 + 2 s s^2 Y\left( s \right) - s - 2 + 2\left[ {sY\left( s \right) - 1} \right] + Y\left( s \right) = 1 + 2s s2Y(s)s2+2[sY(s)1]+Y(s)=1+2s

( s 2 + 2 s + 1 ) Y ( s ) = 3 s + 5 \left( {s^2 + 2s + 1} \right)Y\left( s \right) = 3s + 5 (s2+2s+1)Y(s)=3s+5

Y ( s ) = 5 + 3 s s 2 + 2 s + 1 Y\left( s \right) = {{5 + 3s} \over {s^2 + 2s + 1}} Y(s)=s2+2s+15+3s

>>ilaplace((3*s+5)/(s*s+2*s+1))'
ans=3*exp(-t)+2*t*exp(-t)

y ( t ) = 3 e − t + 2 t ⋅ e − t ,      t ≥ 0 y\left( t \right) = 3e^{ - t} + 2t \cdot e^{ - t} ,\,\,\,\,t \ge 0 y(t)=3et+2tet,t0

(2)解答: 对微分方程两边进行Laplace变换,根据Laplace变换的微分定理,可将系统的初始条件代入方程:

s 2 Y ( s ) − s y ( 0 − ) − y ′ ( 0 − ) + 5 [ s Y ( s ) − y ( 0 − ) ] + 6 Y ( s ) = 3 X ( s ) s^2 Y\left( s \right) - sy\left( {0_ - } \right) - y'\left( {0_{\rm{ - }} } \right) + 5\left[ {sY\left( s \right) - y\left( {0_ - } \right)} \right] + 6Y\left( s \right) = 3X\left( s \right) s2Y(s)sy(0)y(0)+5[sY(s)y(0)]+6Y(s)=3X(s)

X ( s ) = 1 s + 1 X\left( s \right) = {1 \over {s + 1}} X(s)=s+11

( s 2 + 5 s + 6 ) Y ( s ) = 1 s + 1 + 1 \left( {s^2 + 5s + 6} \right)Y\left( s \right) = {1 \over {s + 1}} + 1 (s2+5s+6)Y(s)=s+11+1

Y ( s ) = s + 2 ( s + 1 ) ( s 2 + 5 s + 6 ) Y\left( s \right) = {{s + 2} \over {\left( {s + 1} \right)\left( {s^2 + 5s + 6} \right)}} Y(s)=(s+1)(s2+5s+6)s+2

>>ilaplace((s+2)/((s+1)*(s*s+5*s+6)))'
ans=exp(-t)/2 -exp(-3*t)/2

y ( t ) = 1 2 e − t − 1 2 e − 3 t ,      t ≥ 0 y\left( t \right) = {1 \over 2}e^{ - t} - {1 \over 2}e^{ - 3t} ,\,\,\,\,t \ge 0 y(t)=21et21e3t,t0

 

※ 第二题


利用单边z变换求解下列差分方程,并求出零输入响应和零状态响应。
(1) y [ n ] + 3 y [ n − 1 ] = x [ n ] ,    x [ n ] = ( 1 2 ) n ⋅ u [ n ] ,    y [ − 1 ] = 1 y\left[ n \right] + 3y\left[ {n - 1} \right] = x\left[ n \right],\,\,x\left[ n \right] = \left( {{1 \over 2}} \right)^n \cdot u\left[ n \right],\,\,y\left[ { - 1} \right] = 1 y[n]+3y[n1]=x[n],x[n]=(21)nu[n],y[1]=1
(2) y [ n ] − 1 2 y [ n − 1 ] = x [ n ] − 1 2 x [ n − 1 ] ,    x [ n ] = u [ n ] ,      y [ − 1 ] = 1 y\left[ n \right] - {1 \over 2}y\left[ {n - 1} \right] = x\left[ n \right] - {1 \over 2}x\left[ {n - 1} \right],\,\,x\left[ n \right] = u\left[ n \right],\,\,\,\,y\left[ { - 1} \right] = 1 y[n]21y[n1]=x[n]21x[n1],x[n]=u[n],y[1]=1


■ 求解:

(1)解答: 方程两边同时进行z变换:
Y ( z ) + 3 z − 1 Y ( z ) + 3 ⋅ y [ − 1 ] = X ( z ) Y\left( z \right) + 3z^{ - 1} Y\left( z \right) + 3 \cdot y\left[ { - 1} \right] = X\left( z \right) Y(z)+3z1Y(z)+3y[1]=X(z) ( 1 + 3 z − 1 ) Y ( z ) = z z − 1 2 − 3 \left( {1 + 3z^{ - 1} } \right)Y\left( z \right) = {z \over {z - {1 \over 2}}} - 3 (1+3z1)Y(z)=z21z3 Y ( z ) = z ( − 2 z + 3 2 ) ( z − 1 2 ) ( z + 3 ) = 1 7 z z − 1 2 + − 15 7 z z + 3 Y\left( z \right) = {{z\left( { - 2z + {3 \over 2}} \right)} \over {\left( {z - {1 \over 2}} \right)\left( {z + 3} \right)}} = {{{1 \over 7}z} \over {z - {1 \over 2}}} + {{ - {{15} \over 7}z} \over {z + 3}} Y(z)=(z21)(z+3)z(2z+23)=z2171z+z+3715z
y [ n ] = 1 7 ( 1 2 ) n u [ n ] − 15 7 ( − 3 ) n u [ n ] y\left[ n \right] = {1 \over 7}\left( {{1 \over 2}} \right)^n u\left[ n \right] - {{15} \over 7}\left( { - 3} \right)^n u\left[ n \right] y[n]=71(21)nu[n]715(3)nu[n]

零输入响应:
Y z i ( z ) = − 3 1 + 3 z − 1 = − 3 z z + 3 Y_{zi} \left( z \right) = {{ - 3} \over {1 + 3z^{ - 1} }} = {{ - 3z} \over {z + 3}} Yzi(z)=1+3z13=z+33z y z i [ n ] = − 3 ( − 3 ) n ⋅ u [ n ] = ( − 3 ) n + 1 u [ n ] y_{zi} \left[ n \right] = - 3\left( { - 3} \right)^n \cdot u\left[ n \right] = \left( { - 3} \right)^{n + 1} u\left[ n \right] yzi[n]=3(3)nu[n]=(3)n+1u[n]

零状态响应:
Y z s ( z ) = z 2 ( z − 1 2 ) ( z + 3 ) = 1 7 z z − 1 2 + 6 7 z z + 3 Y_{zs} \left( z \right) = {{z^2 } \over {\left( {z - {1 \over 2}} \right)\left( {z + 3} \right)}} = {{{1 \over 7}z} \over {z - {1 \over 2}}} + {{{6 \over 7}z} \over {z + 3}} Yzs(z)=(z21)(z+3)z2=z2171z+z+376z y z s [ n ] = 1 7 ( 1 2 ) n u [ n ] + 6 7 ( − 3 ) n u [ n ] y_{zs} \left[ n \right] = {1 \over 7}\left( {{1 \over 2}} \right)^n u\left[ n \right] + {6 \over 7}\left( { - 3} \right)^n u\left[ n \right] yzs[n]=71(21)nu[n]+76(3)nu[n]

(2)解答: 方程两边同时进行z变换:
Y ( z ) − 1 2 z − 1 Y ( z ) − 1 2 y [ − 1 ] = ( 1 − 1 2 z − 1 ) ⋅ z z − 1 Y\left( z \right) - {1 \over 2}z^{ - 1} Y\left( z \right) - {1 \over 2}y\left[ { - 1} \right] = \left( {1 - {1 \over 2}z^{ - 1} } \right) \cdot {z \over {z - 1}} Y(z)21z1Y(z)21y[1]=(121z1)z1z Y ( z ) = z ( 3 2 z − 1 ) ( z − 1 ) ( z − 1 2 ) = z z − 1 + 1 2 z − 1 2 Y\left( z \right) = {{z\left( {{3 \over 2}z - 1} \right)} \over {\left( {z - 1} \right)\left( {z - {1 \over 2}} \right)}} = {z \over {z - 1}} + {{{1 \over 2}} \over {z - {1 \over 2}}} Y(z)=(z1)(z21)z(23z1)=z1z+z2121 y [ n ] = u [ n ] + ( 1 2 ) n + 2 u [ n ] y\left[ n \right] = u\left[ n \right] + \left( {{1 \over 2}} \right)^{n + 2} u\left[ n \right] y[n]=u[n]+(21)n+2u[n]

系统的零输入响应为:
Y z i ( z ) = 1 2 z z − 1 2 Y_{zi} \left( z \right) = {{{1 \over 2}z} \over {z - {1 \over 2}}} Yzi(z)=z2121z y z i [ n ] = ( 1 2 ) n + 1 u [ n ] y_{zi} \left[ n \right] = \left( {{1 \over 2}} \right)^{n + 1} u\left[ n \right] yzi[n]=(21)n+1u[n]

系统的零状态响应为:
Y z s ( z ) = z z − 1 Y_{zs} \left( z \right) = {z \over {z - 1}} Yzs(z)=z1z y z s [ n ] = u [ n ] y_{zs} \left[ n \right] = u\left[ n \right] yzs[n]=u[n]

 

※ 第三题


设激励 x ( t ) = e − t x\left( t \right) = e^{ - t} x(t)=et时,系统的零状态响应为: y ( t ) = 1 2 e − t − e − 2 t + 2 e − 3 t            y\left( t \right) = {1 \over 2}e^{ - t} - e^{ - 2t} + 2e^{ - 3t} \;\;\;\;\; y(t)=21ete2t+2e3t
求系统的单位脉冲响应信号 h ( t ) h\left( t \right) h(t)


■ 求解:

分别对输入信号 x ( t ) x\left( t \right) x(t)和系统的零状态响应 y ( t ) y\left( t \right) y(t)进行Laplace变换:
X ( s ) = L T [ e − t ⋅ u ( t ) ] = 1 s + 1 X\left( s \right) = LT\left[ {e^{ - t} \cdot u\left( t \right)} \right] = {1 \over {s + 1}} X(s)=LT[etu(t)]=s+11

Y ( s ) = L T [ 1 2 e − t − e − 2 t + 2 e − 3 t ] = 1 2 1 s + 1 − 1 s + 2 + 2 s + 3 Y\left( s \right) = LT\left[ {{1 \over 2}e^{ - t} - e^{ - 2t} + 2e^{ - 3t} } \right] = {1 \over 2}{1 \over {s + 1}} - {1 \over {s + 2}} + {2 \over {s + 3}} Y(s)=LT[21ete2t+2e3t]=21s+11s+21+s+32

= 3 2 s 2 + 9 2 s + 4 ( s + 1 ) ( s + 2 ) ( s + 3 ) = {{{3 \over 2}s^2 + {9 \over 2}s + 4} \over {\left( {s + 1} \right)\left( {s + 2} \right)\left( {s + 3} \right)}} =(s+1)(s+2)(s+3)23s2+29s+4

根据线性是不变系统的性质,系统的零状态输出等于系统的输入信号与系统的单位冲击响应信号的卷积: y ( t ) = x ( t ) ∗ h ( t ) y\left( t \right) = x\left( t \right) * h\left( t \right) y(t)=x(t)h(t)

根据Laplace变换的卷积定理: Y ( s ) = X ( s ) ⋅ H ( s ) Y\left( s \right) = X\left( s \right) \cdot H\left( s \right) Y(s)=X(s)H(s)

因此: H ( s ) = Y ( s ) X ( s ) = 3 2 s 2 + 9 2 s + 4 ( s + 1 ) 2 ( s + 2 ) ( s + 3 ) H\left( s \right) = {{Y\left( s \right)} \over {X\left( s \right)}} = {{{3 \over 2}s^2 + {9 \over 2}s + 4} \over {\left( {s + 1} \right)^2 \left( {s + 2} \right)\left( {s + 3} \right)}} H(s)=X(s)Y(s)=(s+1)2(s+2)(s+3)23s2+29s+4

>>ilaplace((1.5*s*s+4.5*s+4)/((s+1)^2*(s+2)*(s+3)))'
ans=exp(-2*t)-exp(-3*t)+(t*exp(-t))/2

则系统的单位冲击响应信号 h ( t ) h\left( t \right) h(t)等于: h ( t ) = e − 2 t − e − 3 t + 1 2 t ⋅ e − t ,      t ≥ 0 h\left( t \right) = e^{ - 2t} - e^{ - 3t} + {1 \over 2}t \cdot e^{ - t} ,\,\,\,\,t \ge 0 h(t)=e2te3t+21tet,t0

 

※ 第四题


画出 X ( z ) = − 3 z − 1 1 − 4 z − 1 + 3 z − 2 X\left( z \right) = {{ - 3z^{ - 1} } \over {1 - 4z^{ - 1} + 3z^{ - 2} }} X(z)=14z1+3z23z1
的零极点图,在下列三种收敛域的情况下,求出各自对应的序列:
(1) ∣ z ∣ > 3 \left| z \right| > 3 z>3
(2) ∣ z ∣ < 1 \left| z \right| < 1 z<1
(3) 1 < ∣ z ∣ < 3 1 < \left| z \right| < 3 1<z<3


■ 求解:

X ( z ) = − 3 z z 2 − 4 z + 3 = − 3 z ( z − 1 ) ( z − 3 ) = 3 2 z z − 1 + − 3 2 z z − 3 X\left( z \right) = {{ - 3z} \over {z^2 - 4z + 3}} = {{ - 3z} \over {\left( {z - 1} \right)\left( {z - 3} \right)}} = {{{3 \over 2}z} \over {z - 1}} + {{{{ - 3} \over 2}z} \over {z - 3}} X(z)=z24z+33z=(z1)(z3)3z=z123z+z323z

2020年春季学期信号与系统课程作业参考答案-第十二次作业_第2张图片

(1) x [ n ] = 3 2 u [ n ] − 3 2 3 n ⋅ u [ n ] x\left[ n \right] = {3 \over 2}u\left[ n \right] - {3 \over 2}3^n \cdot u\left[ n \right] x[n]=23u[n]233nu[n]

(2) x [ n ] = − 3 2 u [ − n − 1 ] + 3 2 3 n ⋅ u [ − n − 1 ] x\left[ n \right] = - {3 \over 2}u\left[ { - n - 1} \right] + {3 \over 2}3^n \cdot u\left[ { - n - 1} \right] x[n]=23u[n1]+233nu[n1]

(3) x [ n ] = 3 2 u [ n ] + 3 2 3 n ⋅ u [ − n − 1 ] x\left[ n \right] = {3 \over 2}u\left[ n \right] + {3 \over 2}3^n \cdot u\left[ { - n - 1} \right] x[n]=23u[n]+233nu[n1]

 

※ 第五题


给定实数序列 x [ n ] x\left[ n \right] x[n]及其z变换的表达式 X ( z ) X\left( z \right) X(z)。请证明: X ( z ) = X ∗ ( z ∗ ) X\left( z \right) = X^* \left( {z^* } \right) X(z)=X(z)


■ 证明:

X ( z ) = ∑ n = − ∞ ∞ x [ n ] ⋅ z − n X\left( z \right) = \sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot z^{ - n} } X(z)=n=x[n]zn

X ( z ∗ ) = ∑ n = − ∞ ∞ x [ n ] ⋅ ( z ∗ ) − n   = ( ∑ n = − ∞ ∞ x [ n ] ⋅ z − n ) ∗   = X ∗ ( z ) X\left( {z^* } \right) = \sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot \left( {z^* } \right)^{ - n} } \, = \left( {\sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot z^{ - n} } } \right)^* \, = X^* \left( z \right) X(z)=n=x[n](z)n=(n=x[n]zn)=X(z)

两边再取共轭,原题得证。

 

※ 第六题


已知: X ( z ) = ln ⁡ ( 1 + a z ) ,            ( ∣ z ∣ > ∣ a ∣ ) X\left( z \right) = \ln \left( {1 + {a \over z}} \right),\,\,\,\,\,\,\,\,\,\,\left( {\left| z \right| > \left| a \right|} \right) X(z)=ln(1+za),(z>a)
求对应的序列 x [ n ] x\left[ n \right] x[n]


■ 求解:

方法1:
X ( z ) = ∑ n = 0 ∞ x [ n ] z − n X\left( z \right) = \sum\limits_{n = 0}^\infty {x\left[ n \right]z^{ - n} } X(z)=n=0x[n]zn X ′ ( z ) = ∑ n = 0 ∞ ( − n ) x [ n ] z − n − 1 X'\left( z \right) = \sum\limits_{n = 0}^\infty {\left( { - n} \right)x\left[ n \right]z^{ - n - 1} } X(z)=n=0(n)x[n]zn1 z ⋅ X ′ ( z ) = ∑ n = 0 ∞ { − n ⋅ x [ n ] } z − n z \cdot X'\left( z \right) = \sum\limits_{n = 0}^\infty {\left\{ { - n \cdot x\left[ n \right]} \right\}z^{ - n} } zX(z)=n=0{nx[n]}zn − n ⋅ x [ n ] = Z T − 1 [ z ⋅ X ′ ( z ) ] - n \cdot x\left[ n \right] = ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right] nx[n]=ZT1[zX(z)] x [ n ] = 1 − n ⋅ Z T − 1 [ z ⋅ X ′ ( z ) ] x\left[ n \right] = {1 \over { - n}} \cdot ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right] x[n]=n1ZT1[zX(z)]
d d z X ( z ) = d d z ln ⁡ ( z + a z ) = z z + a ⋅ d d z ( z + a z ) {d \over {dz}}X\left( z \right) = {d \over {dz}}\ln \left( {{{z + a} \over z}} \right) = {z \over {z + a}} \cdot {d \over {dz}}\left( {{{z + a} \over z}} \right) dzdX(z)=dzdln(zz+a)=z+azdzd(zz+a) = z z + a ⋅ z − ( z + a ) z 2 = − a z ( z + a ) = {z \over {z + a}} \cdot {{z - \left( {z + a} \right)} \over {z^2 }} = {{ - a} \over {z\left( {z + a} \right)}} =z+azz2z(z+a)=z(z+a)a
z ⋅ d d z X ( z ) = − a z z ( z + a ) = − a z + a z \cdot {d \over {dz}}X\left( z \right) = {{ - az} \over {z\left( {z + a} \right)}} = {{ - a} \over {z + a}} zdzdX(z)=z(z+a)az=z+aa
Z T − 1 [ z ⋅ X ′ ( z ) ] = ( − a ) n ⋅ u [ n − 1 ] ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right] = \left( { - a} \right)^n \cdot u\left[ {n - 1} \right] ZT1[zX(z)]=(a)nu[n1]
x [ n ] = ( − a ) n − n ⋅ u [ n − 1 ] x\left[ n \right] = {{\left( { - a} \right)^n } \over { - n}} \cdot u\left[ {n - 1} \right] x[n]=n(a)nu[n1]

>>iztrans(log(1+a/z))'
ans=((-1)^(n-1)*a^n*(heaviside(n-1)+kroneckerDelta(n-1,0)/2))/n

方法2:
利用对数进行Taylor展开:

>>taylor(log(1-x),'Order',10)'
ans=-x^9/9 -x^8/8 -x^7/7 -x^6/6 -x^5/5 -x^4/4 -x^3/3 -x^2/2 -x

ln ⁡ ( 1 − x ) = − x − x 2 2 − x 3 3 − x 4 4 − . . . . = ∑ n = 1 ∞ − x n n \ln \left( {1 - x} \right) = - x - {{x^2 } \over 2} - {{x^3 } \over 3} - {{x^4 } \over 4} - .... = \sum\limits_{n = 1}^\infty { - {{x^n } \over n}} ln(1x)=x2x23x34x4....=n=1nxn
ln ⁡ ( 1 − 1 z ) = ∑ n = 1 ∞ − z − n n \ln \left( {1 - {1 \over z}} \right) = \sum\limits_{n = 1}^\infty { - {{z^{ - n} } \over n}} ln(1z1)=n=1nzn

你可能感兴趣的:(教学,信号与系统)