利用Laplace变换求解下列微分方程:
(1) d 2 d t 2 y ( t ) + 2 d d t y ( t ) + y ( t ) = δ ( t ) + 2 δ ′ ( t ) {{d^2 } \over {dt^2 }}y\left( t \right) + 2{d \over {dt}}y\left( t \right) + y\left( t \right) = \delta \left( t \right) + 2\delta '\left( t \right) dt2d2y(t)+2dtdy(t)+y(t)=δ(t)+2δ′(t)
y ( 0 − ) = 1 , y ′ ( 0 − ) = 2 y\left( {0_ - } \right) = 1,\,\,\,y'\left( {0_ - } \right) = 2 y(0−)=1,y′(0−)=2
(2) d 2 d t 2 y ( t ) + 5 d d t y ( t ) + 6 y ( t ) = 3 x ( t ) {{d^2 } \over {dt^2 }}y\left( t \right) + 5{d \over {dt}}y\left( t \right) + 6y\left( t \right) = 3x\left( t \right) dt2d2y(t)+5dtdy(t)+6y(t)=3x(t)
x ( t ) = e − t u ( t ) , y ( 0 − ) = 0 , y ′ ( 0 − ) = 1 x\left( t \right) = e^{ - t} u\left( t \right),\,\,\,y\left( {0_ - } \right) = 0,\,\,y'\left( {0_ - } \right) = 1 x(t)=e−tu(t),y(0−)=0,y′(0−)=1
(1)解答: 对微分方程两边进行Laplace变换,根据Laplace变换的微分定理,可将系统的初始条件代入方程:
s 2 Y ( s ) − s y ( 0 − ) − y ′ ( 0 − ) + 2 [ s Y ( s ) − y ( 0 − ) ] + Y ( s ) = 1 + 2 s s^2 Y\left( s \right) - sy\left( {0_ - } \right) - y'\left( {0_ - } \right) + 2\left[ {sY\left( s \right) - y\left( {0_ - } \right)} \right] + Y\left( s \right) = 1 + 2s s2Y(s)−sy(0−)−y′(0−)+2[sY(s)−y(0−)]+Y(s)=1+2s
s 2 Y ( s ) − s − 2 + 2 [ s Y ( s ) − 1 ] + Y ( s ) = 1 + 2 s s^2 Y\left( s \right) - s - 2 + 2\left[ {sY\left( s \right) - 1} \right] + Y\left( s \right) = 1 + 2s s2Y(s)−s−2+2[sY(s)−1]+Y(s)=1+2s
( s 2 + 2 s + 1 ) Y ( s ) = 3 s + 5 \left( {s^2 + 2s + 1} \right)Y\left( s \right) = 3s + 5 (s2+2s+1)Y(s)=3s+5
Y ( s ) = 5 + 3 s s 2 + 2 s + 1 Y\left( s \right) = {{5 + 3s} \over {s^2 + 2s + 1}} Y(s)=s2+2s+15+3s
>>ilaplace((3*s+5)/(s*s+2*s+1))'
ans=3*exp(-t)+2*t*exp(-t)
y ( t ) = 3 e − t + 2 t ⋅ e − t , t ≥ 0 y\left( t \right) = 3e^{ - t} + 2t \cdot e^{ - t} ,\,\,\,\,t \ge 0 y(t)=3e−t+2t⋅e−t,t≥0
(2)解答: 对微分方程两边进行Laplace变换,根据Laplace变换的微分定理,可将系统的初始条件代入方程:
s 2 Y ( s ) − s y ( 0 − ) − y ′ ( 0 − ) + 5 [ s Y ( s ) − y ( 0 − ) ] + 6 Y ( s ) = 3 X ( s ) s^2 Y\left( s \right) - sy\left( {0_ - } \right) - y'\left( {0_{\rm{ - }} } \right) + 5\left[ {sY\left( s \right) - y\left( {0_ - } \right)} \right] + 6Y\left( s \right) = 3X\left( s \right) s2Y(s)−sy(0−)−y′(0−)+5[sY(s)−y(0−)]+6Y(s)=3X(s)
X ( s ) = 1 s + 1 X\left( s \right) = {1 \over {s + 1}} X(s)=s+11
( s 2 + 5 s + 6 ) Y ( s ) = 1 s + 1 + 1 \left( {s^2 + 5s + 6} \right)Y\left( s \right) = {1 \over {s + 1}} + 1 (s2+5s+6)Y(s)=s+11+1
Y ( s ) = s + 2 ( s + 1 ) ( s 2 + 5 s + 6 ) Y\left( s \right) = {{s + 2} \over {\left( {s + 1} \right)\left( {s^2 + 5s + 6} \right)}} Y(s)=(s+1)(s2+5s+6)s+2
>>ilaplace((s+2)/((s+1)*(s*s+5*s+6)))'
ans=exp(-t)/2 -exp(-3*t)/2
y ( t ) = 1 2 e − t − 1 2 e − 3 t , t ≥ 0 y\left( t \right) = {1 \over 2}e^{ - t} - {1 \over 2}e^{ - 3t} ,\,\,\,\,t \ge 0 y(t)=21e−t−21e−3t,t≥0
利用单边z变换求解下列差分方程,并求出零输入响应和零状态响应。
(1) y [ n ] + 3 y [ n − 1 ] = x [ n ] , x [ n ] = ( 1 2 ) n ⋅ u [ n ] , y [ − 1 ] = 1 y\left[ n \right] + 3y\left[ {n - 1} \right] = x\left[ n \right],\,\,x\left[ n \right] = \left( {{1 \over 2}} \right)^n \cdot u\left[ n \right],\,\,y\left[ { - 1} \right] = 1 y[n]+3y[n−1]=x[n],x[n]=(21)n⋅u[n],y[−1]=1
(2) y [ n ] − 1 2 y [ n − 1 ] = x [ n ] − 1 2 x [ n − 1 ] , x [ n ] = u [ n ] , y [ − 1 ] = 1 y\left[ n \right] - {1 \over 2}y\left[ {n - 1} \right] = x\left[ n \right] - {1 \over 2}x\left[ {n - 1} \right],\,\,x\left[ n \right] = u\left[ n \right],\,\,\,\,y\left[ { - 1} \right] = 1 y[n]−21y[n−1]=x[n]−21x[n−1],x[n]=u[n],y[−1]=1
(1)解答: 方程两边同时进行z变换:
Y ( z ) + 3 z − 1 Y ( z ) + 3 ⋅ y [ − 1 ] = X ( z ) Y\left( z \right) + 3z^{ - 1} Y\left( z \right) + 3 \cdot y\left[ { - 1} \right] = X\left( z \right) Y(z)+3z−1Y(z)+3⋅y[−1]=X(z) ( 1 + 3 z − 1 ) Y ( z ) = z z − 1 2 − 3 \left( {1 + 3z^{ - 1} } \right)Y\left( z \right) = {z \over {z - {1 \over 2}}} - 3 (1+3z−1)Y(z)=z−21z−3 Y ( z ) = z ( − 2 z + 3 2 ) ( z − 1 2 ) ( z + 3 ) = 1 7 z z − 1 2 + − 15 7 z z + 3 Y\left( z \right) = {{z\left( { - 2z + {3 \over 2}} \right)} \over {\left( {z - {1 \over 2}} \right)\left( {z + 3} \right)}} = {{{1 \over 7}z} \over {z - {1 \over 2}}} + {{ - {{15} \over 7}z} \over {z + 3}} Y(z)=(z−21)(z+3)z(−2z+23)=z−2171z+z+3−715z
y [ n ] = 1 7 ( 1 2 ) n u [ n ] − 15 7 ( − 3 ) n u [ n ] y\left[ n \right] = {1 \over 7}\left( {{1 \over 2}} \right)^n u\left[ n \right] - {{15} \over 7}\left( { - 3} \right)^n u\left[ n \right] y[n]=71(21)nu[n]−715(−3)nu[n]
零输入响应:
Y z i ( z ) = − 3 1 + 3 z − 1 = − 3 z z + 3 Y_{zi} \left( z \right) = {{ - 3} \over {1 + 3z^{ - 1} }} = {{ - 3z} \over {z + 3}} Yzi(z)=1+3z−1−3=z+3−3z y z i [ n ] = − 3 ( − 3 ) n ⋅ u [ n ] = ( − 3 ) n + 1 u [ n ] y_{zi} \left[ n \right] = - 3\left( { - 3} \right)^n \cdot u\left[ n \right] = \left( { - 3} \right)^{n + 1} u\left[ n \right] yzi[n]=−3(−3)n⋅u[n]=(−3)n+1u[n]
零状态响应:
Y z s ( z ) = z 2 ( z − 1 2 ) ( z + 3 ) = 1 7 z z − 1 2 + 6 7 z z + 3 Y_{zs} \left( z \right) = {{z^2 } \over {\left( {z - {1 \over 2}} \right)\left( {z + 3} \right)}} = {{{1 \over 7}z} \over {z - {1 \over 2}}} + {{{6 \over 7}z} \over {z + 3}} Yzs(z)=(z−21)(z+3)z2=z−2171z+z+376z y z s [ n ] = 1 7 ( 1 2 ) n u [ n ] + 6 7 ( − 3 ) n u [ n ] y_{zs} \left[ n \right] = {1 \over 7}\left( {{1 \over 2}} \right)^n u\left[ n \right] + {6 \over 7}\left( { - 3} \right)^n u\left[ n \right] yzs[n]=71(21)nu[n]+76(−3)nu[n]
(2)解答: 方程两边同时进行z变换:
Y ( z ) − 1 2 z − 1 Y ( z ) − 1 2 y [ − 1 ] = ( 1 − 1 2 z − 1 ) ⋅ z z − 1 Y\left( z \right) - {1 \over 2}z^{ - 1} Y\left( z \right) - {1 \over 2}y\left[ { - 1} \right] = \left( {1 - {1 \over 2}z^{ - 1} } \right) \cdot {z \over {z - 1}} Y(z)−21z−1Y(z)−21y[−1]=(1−21z−1)⋅z−1z Y ( z ) = z ( 3 2 z − 1 ) ( z − 1 ) ( z − 1 2 ) = z z − 1 + 1 2 z − 1 2 Y\left( z \right) = {{z\left( {{3 \over 2}z - 1} \right)} \over {\left( {z - 1} \right)\left( {z - {1 \over 2}} \right)}} = {z \over {z - 1}} + {{{1 \over 2}} \over {z - {1 \over 2}}} Y(z)=(z−1)(z−21)z(23z−1)=z−1z+z−2121 y [ n ] = u [ n ] + ( 1 2 ) n + 2 u [ n ] y\left[ n \right] = u\left[ n \right] + \left( {{1 \over 2}} \right)^{n + 2} u\left[ n \right] y[n]=u[n]+(21)n+2u[n]
系统的零输入响应为:
Y z i ( z ) = 1 2 z z − 1 2 Y_{zi} \left( z \right) = {{{1 \over 2}z} \over {z - {1 \over 2}}} Yzi(z)=z−2121z y z i [ n ] = ( 1 2 ) n + 1 u [ n ] y_{zi} \left[ n \right] = \left( {{1 \over 2}} \right)^{n + 1} u\left[ n \right] yzi[n]=(21)n+1u[n]
系统的零状态响应为:
Y z s ( z ) = z z − 1 Y_{zs} \left( z \right) = {z \over {z - 1}} Yzs(z)=z−1z y z s [ n ] = u [ n ] y_{zs} \left[ n \right] = u\left[ n \right] yzs[n]=u[n]
设激励 x ( t ) = e − t x\left( t \right) = e^{ - t} x(t)=e−t时,系统的零状态响应为: y ( t ) = 1 2 e − t − e − 2 t + 2 e − 3 t y\left( t \right) = {1 \over 2}e^{ - t} - e^{ - 2t} + 2e^{ - 3t} \;\;\;\;\; y(t)=21e−t−e−2t+2e−3t
求系统的单位脉冲响应信号 h ( t ) h\left( t \right) h(t)。
分别对输入信号 x ( t ) x\left( t \right) x(t)和系统的零状态响应 y ( t ) y\left( t \right) y(t)进行Laplace变换:
X ( s ) = L T [ e − t ⋅ u ( t ) ] = 1 s + 1 X\left( s \right) = LT\left[ {e^{ - t} \cdot u\left( t \right)} \right] = {1 \over {s + 1}} X(s)=LT[e−t⋅u(t)]=s+11
Y ( s ) = L T [ 1 2 e − t − e − 2 t + 2 e − 3 t ] = 1 2 1 s + 1 − 1 s + 2 + 2 s + 3 Y\left( s \right) = LT\left[ {{1 \over 2}e^{ - t} - e^{ - 2t} + 2e^{ - 3t} } \right] = {1 \over 2}{1 \over {s + 1}} - {1 \over {s + 2}} + {2 \over {s + 3}} Y(s)=LT[21e−t−e−2t+2e−3t]=21s+11−s+21+s+32
= 3 2 s 2 + 9 2 s + 4 ( s + 1 ) ( s + 2 ) ( s + 3 ) = {{{3 \over 2}s^2 + {9 \over 2}s + 4} \over {\left( {s + 1} \right)\left( {s + 2} \right)\left( {s + 3} \right)}} =(s+1)(s+2)(s+3)23s2+29s+4
根据线性是不变系统的性质,系统的零状态输出等于系统的输入信号与系统的单位冲击响应信号的卷积: y ( t ) = x ( t ) ∗ h ( t ) y\left( t \right) = x\left( t \right) * h\left( t \right) y(t)=x(t)∗h(t)
根据Laplace变换的卷积定理: Y ( s ) = X ( s ) ⋅ H ( s ) Y\left( s \right) = X\left( s \right) \cdot H\left( s \right) Y(s)=X(s)⋅H(s)
因此: H ( s ) = Y ( s ) X ( s ) = 3 2 s 2 + 9 2 s + 4 ( s + 1 ) 2 ( s + 2 ) ( s + 3 ) H\left( s \right) = {{Y\left( s \right)} \over {X\left( s \right)}} = {{{3 \over 2}s^2 + {9 \over 2}s + 4} \over {\left( {s + 1} \right)^2 \left( {s + 2} \right)\left( {s + 3} \right)}} H(s)=X(s)Y(s)=(s+1)2(s+2)(s+3)23s2+29s+4
>>ilaplace((1.5*s*s+4.5*s+4)/((s+1)^2*(s+2)*(s+3)))'
ans=exp(-2*t)-exp(-3*t)+(t*exp(-t))/2
则系统的单位冲击响应信号 h ( t ) h\left( t \right) h(t)等于: h ( t ) = e − 2 t − e − 3 t + 1 2 t ⋅ e − t , t ≥ 0 h\left( t \right) = e^{ - 2t} - e^{ - 3t} + {1 \over 2}t \cdot e^{ - t} ,\,\,\,\,t \ge 0 h(t)=e−2t−e−3t+21t⋅e−t,t≥0
画出 X ( z ) = − 3 z − 1 1 − 4 z − 1 + 3 z − 2 X\left( z \right) = {{ - 3z^{ - 1} } \over {1 - 4z^{ - 1} + 3z^{ - 2} }} X(z)=1−4z−1+3z−2−3z−1
的零极点图,在下列三种收敛域的情况下,求出各自对应的序列:
(1) ∣ z ∣ > 3 \left| z \right| > 3 ∣z∣>3
(2) ∣ z ∣ < 1 \left| z \right| < 1 ∣z∣<1
(3) 1 < ∣ z ∣ < 3 1 < \left| z \right| < 3 1<∣z∣<3
X ( z ) = − 3 z z 2 − 4 z + 3 = − 3 z ( z − 1 ) ( z − 3 ) = 3 2 z z − 1 + − 3 2 z z − 3 X\left( z \right) = {{ - 3z} \over {z^2 - 4z + 3}} = {{ - 3z} \over {\left( {z - 1} \right)\left( {z - 3} \right)}} = {{{3 \over 2}z} \over {z - 1}} + {{{{ - 3} \over 2}z} \over {z - 3}} X(z)=z2−4z+3−3z=(z−1)(z−3)−3z=z−123z+z−32−3z
(1) x [ n ] = 3 2 u [ n ] − 3 2 3 n ⋅ u [ n ] x\left[ n \right] = {3 \over 2}u\left[ n \right] - {3 \over 2}3^n \cdot u\left[ n \right] x[n]=23u[n]−233n⋅u[n]
(2) x [ n ] = − 3 2 u [ − n − 1 ] + 3 2 3 n ⋅ u [ − n − 1 ] x\left[ n \right] = - {3 \over 2}u\left[ { - n - 1} \right] + {3 \over 2}3^n \cdot u\left[ { - n - 1} \right] x[n]=−23u[−n−1]+233n⋅u[−n−1]
(3) x [ n ] = 3 2 u [ n ] + 3 2 3 n ⋅ u [ − n − 1 ] x\left[ n \right] = {3 \over 2}u\left[ n \right] + {3 \over 2}3^n \cdot u\left[ { - n - 1} \right] x[n]=23u[n]+233n⋅u[−n−1]
给定实数序列 x [ n ] x\left[ n \right] x[n]及其z变换的表达式 X ( z ) X\left( z \right) X(z)。请证明: X ( z ) = X ∗ ( z ∗ ) X\left( z \right) = X^* \left( {z^* } \right) X(z)=X∗(z∗)
X ( z ) = ∑ n = − ∞ ∞ x [ n ] ⋅ z − n X\left( z \right) = \sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot z^{ - n} } X(z)=n=−∞∑∞x[n]⋅z−n
X ( z ∗ ) = ∑ n = − ∞ ∞ x [ n ] ⋅ ( z ∗ ) − n = ( ∑ n = − ∞ ∞ x [ n ] ⋅ z − n ) ∗ = X ∗ ( z ) X\left( {z^* } \right) = \sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot \left( {z^* } \right)^{ - n} } \, = \left( {\sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot z^{ - n} } } \right)^* \, = X^* \left( z \right) X(z∗)=n=−∞∑∞x[n]⋅(z∗)−n=(n=−∞∑∞x[n]⋅z−n)∗=X∗(z)
两边再取共轭,原题得证。
已知: X ( z ) = ln ( 1 + a z ) , ( ∣ z ∣ > ∣ a ∣ ) X\left( z \right) = \ln \left( {1 + {a \over z}} \right),\,\,\,\,\,\,\,\,\,\,\left( {\left| z \right| > \left| a \right|} \right) X(z)=ln(1+za),(∣z∣>∣a∣)
求对应的序列 x [ n ] x\left[ n \right] x[n]。
方法1:
X ( z ) = ∑ n = 0 ∞ x [ n ] z − n X\left( z \right) = \sum\limits_{n = 0}^\infty {x\left[ n \right]z^{ - n} } X(z)=n=0∑∞x[n]z−n X ′ ( z ) = ∑ n = 0 ∞ ( − n ) x [ n ] z − n − 1 X'\left( z \right) = \sum\limits_{n = 0}^\infty {\left( { - n} \right)x\left[ n \right]z^{ - n - 1} } X′(z)=n=0∑∞(−n)x[n]z−n−1 z ⋅ X ′ ( z ) = ∑ n = 0 ∞ { − n ⋅ x [ n ] } z − n z \cdot X'\left( z \right) = \sum\limits_{n = 0}^\infty {\left\{ { - n \cdot x\left[ n \right]} \right\}z^{ - n} } z⋅X′(z)=n=0∑∞{−n⋅x[n]}z−n − n ⋅ x [ n ] = Z T − 1 [ z ⋅ X ′ ( z ) ] - n \cdot x\left[ n \right] = ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right] −n⋅x[n]=ZT−1[z⋅X′(z)] x [ n ] = 1 − n ⋅ Z T − 1 [ z ⋅ X ′ ( z ) ] x\left[ n \right] = {1 \over { - n}} \cdot ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right] x[n]=−n1⋅ZT−1[z⋅X′(z)]
d d z X ( z ) = d d z ln ( z + a z ) = z z + a ⋅ d d z ( z + a z ) {d \over {dz}}X\left( z \right) = {d \over {dz}}\ln \left( {{{z + a} \over z}} \right) = {z \over {z + a}} \cdot {d \over {dz}}\left( {{{z + a} \over z}} \right) dzdX(z)=dzdln(zz+a)=z+az⋅dzd(zz+a) = z z + a ⋅ z − ( z + a ) z 2 = − a z ( z + a ) = {z \over {z + a}} \cdot {{z - \left( {z + a} \right)} \over {z^2 }} = {{ - a} \over {z\left( {z + a} \right)}} =z+az⋅z2z−(z+a)=z(z+a)−a
z ⋅ d d z X ( z ) = − a z z ( z + a ) = − a z + a z \cdot {d \over {dz}}X\left( z \right) = {{ - az} \over {z\left( {z + a} \right)}} = {{ - a} \over {z + a}} z⋅dzdX(z)=z(z+a)−az=z+a−a
Z T − 1 [ z ⋅ X ′ ( z ) ] = ( − a ) n ⋅ u [ n − 1 ] ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right] = \left( { - a} \right)^n \cdot u\left[ {n - 1} \right] ZT−1[z⋅X′(z)]=(−a)n⋅u[n−1]
x [ n ] = ( − a ) n − n ⋅ u [ n − 1 ] x\left[ n \right] = {{\left( { - a} \right)^n } \over { - n}} \cdot u\left[ {n - 1} \right] x[n]=−n(−a)n⋅u[n−1]
>>iztrans(log(1+a/z))'
ans=((-1)^(n-1)*a^n*(heaviside(n-1)+kroneckerDelta(n-1,0)/2))/n
方法2:
利用对数进行Taylor展开:
>>taylor(log(1-x),'Order',10)'
ans=-x^9/9 -x^8/8 -x^7/7 -x^6/6 -x^5/5 -x^4/4 -x^3/3 -x^2/2 -x
ln ( 1 − x ) = − x − x 2 2 − x 3 3 − x 4 4 − . . . . = ∑ n = 1 ∞ − x n n \ln \left( {1 - x} \right) = - x - {{x^2 } \over 2} - {{x^3 } \over 3} - {{x^4 } \over 4} - .... = \sum\limits_{n = 1}^\infty { - {{x^n } \over n}} ln(1−x)=−x−2x2−3x3−4x4−....=n=1∑∞−nxn
ln ( 1 − 1 z ) = ∑ n = 1 ∞ − z − n n \ln \left( {1 - {1 \over z}} \right) = \sum\limits_{n = 1}^\infty { - {{z^{ - n} } \over n}} ln(1−z1)=n=1∑∞−nz−n