nltk学习之统计词频和分词nltk.word_tokenize nltk.FreqDist

1. 分词

(1)可以使用split()函数

 

import nltk
import numpy as np
import re
from nltk.corpus import stopwords

#1 分词1
text = "Sentiment analysis is a challenging subject in machine learning.\
 People express their emotions in language that is often obscured by sarcasm,\
  ambiguity, and plays on words, all of which could be very misleading for \
  both humans and computers. There's another Kaggle competition for movie review \
  sentiment analysis. In this tutorial we explore how Word2Vec can be applied to \
  a similar problem.".lower()
text_list = re.sub("[^a-zA-Z]", " ", text).split()

(2)使用nltk.word_tokenize

text_list = nltk.word_tokenize(text)

2. 去掉标点符号和停用词

 

 

#2 q去掉标点符号和停用词
#去掉标点符号
english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
text_list = [word for word in text_list if word not in english_punctuations]
#去掉停用词
stops = set(stopwords.words("english"))
text_list = [word for word in text_list if word not in stops]

3. 统计词频nltk.FreqDist

 

 

freq_dist = nltk.FreqDist(text_list)
freq_list = []
num_words = len(freq_dist.values())
for i in range(num_words):
    freq_list.append([list(freq_dist.keys())[i],list(freq_dist.values())[i]])
freqArr = np.array(freq_list)

4. 词性标注nltk.pos_tag,具体的词性解释参考另一篇博文

 

 
In[33]: nltk.pos_tag(text_list)
Out[33]: 
[('sentiment', 'NN'),
 ('analysis', 'NN'),
 ('challenging', 'VBG'),
 ('subject', 'JJ'),
 ('machine', 'NN'),
 ('learning', 'VBG'),
 ('people', 'NNS'),
 ('express', 'JJ'),
 ('emotions', 'NNS'),
 ('language', 'NN'),
 ('often', 'RB'),
 ('obscured', 'VBD'),
 ('sarcasm', 'JJ'),
 ('ambiguity', 'NN'),
 ('plays', 'NNS'),
 ('words', 'NNS'),
 ('could', 'MD'),
 ('misleading', 'VB'),
 ('humans', 'NNS'),
 ('computers', 'NNS'),
 ("'s", 'POS'),
 ('another', 'DT'),
 ('kaggle', 'NN'),
 ('competition', 'NN'),
 ('movie', 'NN'),
 ('review', 'NN'),
 ('sentiment', 'NN'),
 ('analysis', 'NN'),
 ('tutorial', 'JJ'),
 ('explore', 'NN'),
 ('word2vec', 'NN'),
 ('applied', 'VBD'),
 ('similar', 'JJ'),
 ('problem', 'NN')]
 

你可能感兴趣的:(自然语言处理)