1.框架了解:高性能的异步下载、解析、持久化存储
2.下载安装,创建项目-----------
pip install wheel
Twisted 5步安装!
二.安装 Linux: pip3 install scrapy Windows: a. pip3 install wheel b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl d. pip3 install pywin32 e. pip3 install scrapy
scrapy startproject 项目名称
3.项目使用--5步听视频总结:
1.新建工程 scrapy startproject fristBlood
2.cd fristBlood 新建爬虫文件scrapy genspider chouti www.chouti.com(在spiders中会新增一个chouti.py,注意名称、start_url,注释#allowed_domains)
3.在chouti.py中进行parse方法的编写
4.配置文件的配置:在settings中进行UA伪装、ROBOTSTXT_OBEY = False
5.配置完后,在cmd中执行:scarpy crawl 爬虫文件名称
1.爬取chouti fristBlood
# -*- coding: utf-8 -*- import scrapy class ChoutiSpider(scrapy.Spider): #爬虫文件的名称:可以指定某一个具体的爬虫文件 name = 'chouti' #允许的域名: #allowed_domains = ['www.chouti.com'] #起始url列表:工程被执行后就可以获取该列表中url所对应的页面数据 start_urls = ['https://dig.chouti.com/'] #该方法作用:就是讲起始url列表中指定url对应的页面数据进行解析操作 #response参数:就是对起始url发起请求后对应的响应对象 def parse(self, response): print(response)
2.爬取糗百 ---注意parse中 qiubaiPro
#extract()可以将selector对象中存储的文本内容获取
封装一个可迭代类型
基于终端指令执行 scarpy crawl -o data.csv qiubai --nolog---不常用
# -*- coding: utf-8 -*- import scrapy class QiubaiSpider(scrapy.Spider): name = 'qiubai' #allowed_domains = ['www.fdsfds.com'] start_urls = ['https://www.qiushibaike.com/text/'] def parse(self, response): #xpath返回的列表元素类型为Selecor类型 div_list = response.xpath('//div[@id="content-left"]/div') #声明一个用于存储解析到数据的列表 all_data = [] for div in div_list: #extract()可以将selector对象中存储的文本内容获取 #author = div.xpath('./div[1]/a[2]/h2/text()')[0].extract() author = div.xpath('./div[1]/a[2]/h2/text()').extract_first() #取出第一个元素,不用[0]了--意义同上行 content = div.xpath('.//div[@class="content"]/span//text()').extract() #//text获取的内容不止一个,extract()获取多个列表内容 content = "".join(content) #将列表转化成字符串 dict = { 'author':author, 'content':content } all_data.append(dict) return all_data #持久化存储方式: #1.基于终端指令:必须保证parse方法有一个可迭代类型对象的返回 #2.基于管道
3.爬取糗百--基于管道执行--注意item pipeLinepro
pipelines.py编写
在settings中开启ITEM_PIPELINES 67-69行
ITEM_PIPELINES数值越小,优先级越高(管道中)
一个写到磁盘,一个写到数据库中
屏蔽日志信息 scarpy crawl chouti --nolog
cls清屏
import scrapy class PipelineproItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() author = scrapy.Field() content = scrapy.Field()
# -*- coding: utf-8 -*- # Scrapy settings for pipeLinePro project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'pipeLinePro' SPIDER_MODULES = ['pipeLinePro.spiders'] NEWSPIDER_MODULE = 'pipeLinePro.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'pipeLinePro (+http://www.yourdomain.com)' USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'pipeLinePro.middlewares.PipelineproSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'pipeLinePro.middlewares.PipelineproDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'pipeLinePro.pipelines.PipelineproPipeline': 300, 'pipeLinePro.pipelines.MyPipeline': 301, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
# -*- coding: utf-8 -*- import scrapy from pipeLinePro.items import PipelineproItem class QiubaiSpider(scrapy.Spider): name = 'qiubai' #allowed_domains = ['www.ds.com'] start_urls = ['https://www.qiushibaike.com/text/'] def parse(self, response): # xpath返回的列表元素类型为Selecor类型 div_list = response.xpath('//div[@id="content-left"]/div') # 声明一个用于存储解析到数据的列表 all_data = [] for div in div_list: # extract()可以将selector对象中存储的文本内容获取 # author = div.xpath('./div[1]/a[2]/h2/text()')[0].extract() author = div.xpath('./div[1]/a[2]/h2/text()').extract_first() content = div.xpath('.//div[@class="content"]/span//text()').extract() content = "".join(content) #实例化item对象 item = PipelineproItem() #将解析到的数据值存储到item对象中 item['author'] = author item['content'] = content #将item对象提交给管道 yield item # 持久化存储方式: # 1.基于终端指令:必须保证parse方法有一个可迭代类型对象的返回 # 2.基于管道: #1.items.py:对该文件中的类进行实例化操作(item对象:存储解析到的数据值)。 #2.pipeline.py:管道,作用就是接受爬虫文件提交的item对象,然后将该对象中的数据值进行持久化存储操作
# -*- coding: utf-8 -*- import pymysql class PipelineproPipeline(object): #作用:每当爬虫文件向管道提交一次item,该方法就会被调用一次。item参数就是接受到爬虫文件给提交过来的item对象 #该方法只有在开始爬虫的时候被调用一次 fp = None def open_spider(self,spider): #父类的方法 print('开始爬虫') self.fp = open('./qiubai_data.txt', 'w', encoding='utf-8') def process_item(self, item, spider): #父类的方法 author = item['author'] content = item['content'] self.fp.write(author+":"+content) return item #该方法只有在爬虫结束后被调用一次 def close_spider(self,spider): #父类的方法 print('爬虫结束') self.fp.close() class MyPipeline(object): conn = None cursor = None # 作用:每当爬虫文件向管道提交一次item,该方法就会被调用一次。item参数就是接受到爬虫文件给提交过来的item对象 def open_spider(self,spider): self.conn = pymysql.Connect(host="192.168.12.65", port=3306, db="scrapyDB", charset="utf8", user="root") self.cursor = self.conn.cursor() print('mysql') def process_item(self, item, spider): author = item['author'] content = item['content'] sql = "insert into qiubai values('%s','%s')" % (author,content) #qiubai是表名 try: self.cursor.execute(sql) #执行sql self.conn.commit() #事务的处理,没有问题提交,有问题回滚 except Exception as e: print(e) self.conn.rollback() return item
管道操作4步---听视频自己总结:
前提要在parse方法中获取解析到的数据,
1.将解析到的数据值存储到item对象中(前提item中要进行属性的声明),
2.使用yield关键字将item对象提交给管道
3.在pipelines.py中进行PipelineproPipeline方法的编写,编写process_item
4.在配置文件中开启管道
1.#实例化item对象
item = PipelineproItem()
2.在items.py中声明属性
3.#将解析到的数据值存储到item对象中
item['author'] = author
item['content'] = content
4.#将item对象提交给管道
yield item
将数据写入到数据库:新建数据库、表
select * from qiubai 查看写入的内容