目录:
使用nn.Module
LeNet网络模型结构:
Pytorch代码实现:
import torch.nn as nn
import torch.functional as F
# LeNet网络构建
class LeNet(nn.Module):
# 初始化
def __init__(self,classes):
# 继承nn.module的初始化
super(LeNet,self).__init__()
# 子模块创建
# conv2d->convNd->module
self.conv1 = nn.Conv2d(3,6,5)
self.conv2 = nn.Conv2d(6,16,5)
# 每一层的输出是下一层的输入
# 对传入数据应用线性变换::数学表达就是:Y = XA^T + b
self.fc1 = nn.Linear(16*5*5,120)
self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(84,classes)
# 前向传播,也就是将前面创建的每层网络连在一起
def forward(self,x):
# 这里的每一层输出也是下一层的输入
# out1--->out2-->out3-->.....-->out8逐层连接
out1 = F.relu(self.conv1(x))
out2 = F.max_pool2d(out1,2)
out3 = F.relu(self.conv2(out2))
out4 = F.max_pool2d(out3,2)
out5 = out.view(out4.size(0),-1)
out6 = F.relu(self.fc1(out5))
out7 = F.relu(self.fc2(out6))
out8 = self.fc3(out7)
return out8
# 权重初始化操作
def initialize_weights(self):
# 遍历每一个module模块
for m in self.modules():
# 判断是不是conv2d类
if isinstance(m,nn.Conv2d):
# 参数初始化方法
nn.init.xavier_normal_(m.weight.data)
# 参数不是0的话就清零操作
if m.bias is not None:
m.bias.data.zero_()
# isinstance函数是判断一个对象是否是一个已知的类型,类似type()
# 批处理归一化
elif isinstance(m,nn.BatchNorm2d):
# 这里的对数据初始化,
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m,nn.Linear):
# 用从正态分布中得出的值填充输入张量;mean=0,std=0.1s
nn.init.normal_(m.weight.data,0,0.1)
# 偏置初始化为0
m.bias.data.zero_()
除了上面的方法;还可以使用更简单的方法获得alexnet
# 构建Alexnet
alexnet = torchvision.models.AlexNet()
print(alexnet)
AlexNet( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)) (1): ReLU(inplace=True) (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (4): ReLU(inplace=True) (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): ReLU(inplace=True) (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (9): ReLU(inplace=True) (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace=True) (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(6, 6)) (classifier): Sequential( (0): Dropout(p=0.5, inplace=False) (1): Linear(in_features=9216, out_features=4096, bias=True) (2): ReLU(inplace=True) (3): Dropout(p=0.5, inplace=False) (4): Linear(in_features=4096, out_features=4096, bias=True) (5): ReLU(inplace=True) (6): Linear(in_features=4096, out_features=1000, bias=True) ) )