参考实战Kaggle比赛:房价预测
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
torch.set_default_tensor_type(torch.FloatTensor)
#PART ONE 获取和读取数据集-----------------------------------------------------
train_data = pd.read_csv('./train.csv')
test_data = pd.read_csv('./test.csv')
# 训练集包括1460个样本和80个特征 1个标签,测试数据集包括1459个样本和80个特征
print(train_data.shape)
# 前4个样本的前4个特征、后2个特征和标签(SalePrice),0:4指前四行
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
# 第一个特征是Id,它能帮助模型记住每个训练样本,
# 但难以推广到测试样本,所以我们不使用它来训练。
# 我们将所有的训练数据和测试数据的79个特征按样本连结。
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
#PART TWO 预处理数据-----------------------------------------------------------
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
# numeric_features 是 all_features 的索引
# 设该特征在整个数据集上的均值为μ,标准差为σ。
# 那么,我们可以将该特征的每个值先减去μ再除以σ得到标准化后的每个特征值。
all_features[numeric_features] = all_features[numeric_features].apply(
lambda x: (x - x.mean()) / (x.std()))
# 标准化后,每个数值特征的均值变为0,所以可以直接用0来替换缺失值
all_features[numeric_features] = all_features[numeric_features].fillna(0)
# 将离散数值转成指示特征--
# 举例如下:假设特征MSZoning里面有两个不同的离散值RL和RM,
# 那么这一步转换将去掉MSZoning特征,
# 并新加两个特征MSZoning_RL和MSZoning_RM,其值为0或1。
# 如果一个样本原来在MSZoning里的值为RL,
# 那么有MSZoning_RL=1且MSZoning_RM=0。
# dummy_na=True将缺失值也当作合法的特征值并为其创建指示特征
all_features = pd.get_dummies(all_features, dummy_na=True)
print(all_features.shape) # (2919, 331),这一步转换将特征数从79增加到了331
# 通过values属性得到NumPy格式的数据,并转成Tensor方便后面的训练
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float)
train_labels = torch.tensor(train_data.SalePrice.values, dtype=torch.float).view(-1, 1)
# PART THREE 训练模型---------------------------------------------------------
# 使用一个基本的线性回归模型和平方损失函数来训练模型
loss = torch.nn.MSELoss()
def get_net(feature_num):
net = nn.Linear(feature_num, 1)
for param in net.parameters():
nn.init.normal_(param, mean=0, std=0.01)
return net
# 定义比赛用来评价模型的对数均方根误差
def log_rmse(net, features, labels):
with torch.no_grad():
# 将小于1的值设成1,使得取对数时数值更稳定
clipped_preds = torch.max(net(features), torch.tensor(1.0))
rmse = torch.sqrt(2 * loss(clipped_preds.log(), labels.log()).mean())
return rmse.item()
def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
dataset = torch.utils.data.TensorDataset(train_features, train_labels)
train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
# 这里使用了Adam优化算法
optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay)
net = net.float()
for epoch in range(num_epochs):
for X, y in train_iter:
l = loss(net(X.float()), y.float())
optimizer.zero_grad()
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
# PART FOUR K折交叉验证--------------------------------------------------------
# K折交叉验证用来选择模型设计并调节超参数
# 在K折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,
# 然后我们做K次模型训练和验证
# 每一次,我们使用一个子数据集验证模型,并使用其他K−1个子数据集来训练模型。
# 在这K次训练和验证中,每次用来验证模型的子数据集都不同。
# 最后,我们对这K次训练误差和验证误差分别求平均。
def get_k_fold_data(k, i, X, y):
# 返回第i折交叉验证时所需要的训练和验证数据
assert k > 1 #k>1才执行下面
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size) #切片
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat((X_train, X_part), dim=0) #如果不是第i折就将剩余折连接起来
y_train = torch.cat((y_train, y_part), dim=0)
return X_train, y_train, X_valid, y_valid
# 在K折交叉验证中训练K次并返回训练和验证的平均误差。
def k_fold(k, X_train, y_train, num_epochs,
learning_rate, weight_decay, batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net(X_train.shape[1])
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
range(1, num_epochs + 1), valid_ls,
['train', 'valid'])
print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))
return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse(均方根误差) %f, avg valid rmse %f' % (k, train_l, valid_l))
# 定义预测函数
def train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size):
net = get_net(train_features.shape[1])
train_ls, _ = train(net, train_features, train_labels, None, None,
num_epochs, lr, weight_decay, batch_size)
d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
print('train rmse %f' % train_ls[-1])
preds = net(test_features).detach().numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('./submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)
d2lzh_pytorch