spark中dataset、dataframe、和RDD的区别

DataFrame

DataFrame的前身是SchemaRDD,从Spark 1.3.0开始SchemaRDD更名为DataFrame。与SchemaRDD的主要区别是:DataFrame不再直接继承自RDD,而是自己实现了RDD的绝大多数功能。你仍旧可以在DataFrame上调用rdd方法将其转换为一个RDD。
在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库的二维表格,DataFrame带有Schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型,但底层做了更多的优化。DataFrame可以从很多数据源构建,比如:已经存在的RDD、结构化文件、外部数据库、Hive表。

2.2. DataFrame与RDD的区别

RDD可看作是分布式的对象的集合,Spark并不知道对象的详细模式信息,DataFrame可看作是分布式的Row对象的集合,其提供了由列组成的详细模式信息,使得Spark SQL可以进行某些形式的执行优化。DataFrame和普通的RDD的逻辑框架区别如下所示
spark中dataset、dataframe、和RDD的区别_第1张图片
上图直观地体现了DataFrame和RDD的区别。
左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解 Person类的内部结构。
而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么,DataFrame多了数据的结构信息,即schema。这样看起来就像一张表了,DataFrame还配套了新的操作数据的方法,DataFrame API(如df.select())和SQL(select id, name from xx_table where …)。
此外DataFrame还引入了off-heap,意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作。
RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化。
有了DataFrame这个高一层的抽象后,我们处理数据更加简单了,甚至可以用SQL来处理数据了,对开发者来说,易用性有了很大的提升。
不仅如此,通过DataFrame API或SQL处理数据,会自动经过Spark 优化器(Catalyst)的优化,即使你写的程序或SQL不高效,也可以运行的很快。

2.3. DataFrame与RDD的优缺点

RDD的优缺点:
优点:
(1)编译时类型安全
编译时就能检查出类型错误
(2)面向对象的编程风格
直接通过对象调用方法的形式来操作数据
缺点:
(1)序列化和反序列化的性能开销
无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化。
(2)GC(垃圾回收)的性能开销
频繁的创建和销毁对象, 势必会增加GC
DataFrame通过引入schema和off-heap(不在堆里面的内存,指的是除了不在堆的内存,使用操作系统上的内存),解决了RDD的缺点, Spark通过schame就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了;通过off-heap引入,可以快速的操作数据,避免大量的GC。但是却丢了RDD的优点,DataFrame不是类型安全的, API也不是面向对象风格的。

4.DataSet

DataSet是分布式的数据集合,Dataset提供了强类型支持,也是在RDD的每行数据加了类型约束。DataSet是在Spark1.6中添加的新的接口。它集中了RDD的优点(强类型和可以用强大lambda函数)以及使用了Spark SQL优化的执行引擎。DataSet可以通过JVM的对象进行构建,可以用函数式的转换(map/flatmap/filter)进行多种操作。

DataFrame、DataSet、RDD的区别

假设RDD中的两行数据长这样:
在这里插入图片描述
那么DataFrame中的数据长这样:
spark中dataset、dataframe、和RDD的区别_第2张图片
那么Dataset中的数据长这样:spark中dataset、dataframe、和RDD的区别_第3张图片
或者长这样(每行数据是个Object):
spark中dataset、dataframe、和RDD的区别_第4张图片
DataSet包含了DataFrame的功能,Spark2.0中两者统一,DataFrame表示为DataSet[Row],即DataSet的子集。
(1)DataSet可以在编译时检查类型
(2)并且是面向对象的编程接口
相比DataFrame,Dataset提供了编译时类型检查,对于分布式程序来讲,提交一次作业太费劲了(要编译、打包、上传、运行),到提交到集群运行时才发现错误,这会浪费大量的时间,这也是引入Dataset的一个重要原因。

DataFrame与DataSet互相转换

DataFrame和DataSet可以相互转化。
(1)DataFrame转为 DataSet
df.as[ElementType] 这样可以把DataFrame转化为DataSet。
(2)DataSet转为DataFrame
ds.toDF() 这样可以把DataSet转化为DataFrame。

你可能感兴趣的:(spark中dataset、dataframe、和RDD的区别)