(整理)ACM荣耀之路 ACM学习路线

ACM荣耀之路!!


第一阶段:练经典常用算法,下面的每个算法打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想.

1.最短路(Floyd Dijstra BellmanFord)
2.最小生成树(prim,kruskal)
3.二分
4.叉乘 判线段相交 凸包.
5.BFS DFS hash(要熟要灵活 代码要简)
6.辗转相除 线段交点和多角形面积公式.

 

第二阶段:练习复杂一点,但也较常用的算法。
1. 二分图匹配(匈牙利),最小路径覆盖
2. 网络流,最小费用流。
3. 线段树.
4. 并查集。
5. 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp
6.博弈类算法。博弈树,二进制法等。
7.最大团,最大独立集。
8.判断点在多边形内。
9. 差分约束系统.
10. 双向广度搜索、A*算法,最小耗散优先.

===========================================================


ACMer必备知识(任重而道远……



图论

路径问题
0/1边权最短路径
BFS
非负边权最短路径(Dijkstra
可以用Dijkstra解决问题的特征
负边权最短路径
Bellman-Ford
Bellman-FordYen-氏优化
差分约束系统
Floyd
广义路径问题
传递闭包
极小极大距离 极大极小距离
Euler Path / Tour
圈套圈算法
混合图的 Euler Path / Tour
Hamilton Path / Tour
特殊图的Hamilton Path / Tour 构造

 

生成树问题
最小生成树
k小生成树
最优比率生成树
0/1分数规划
度限制生成树

连通性问题
强大的DFS算法
无向图连通性
割点
割边
二连通分支
有向图连通性
强连通分支
2-SAT
最小点基

有向无环图
拓扑排序
有向无环图与动态规划的关系



二分图匹配问题
一般图问题与二分图问题的转换思路
最大匹配
有向图的最小路径覆盖
0 / 1矩阵的最小覆盖
完备匹配
最优匹配
稳定婚姻

网络流问题
网络流模型的简单特征和与线性规划的关系
最大流最小割定理
最大流问题
有上下界的最大流问题
循环流
最小费用最大流 最大费用最大流

弦图的性质和判定


组合数学

逼近
递推 动态规划
概率问题
Polya定理

计算几何 解析几何

计算几何的核心:叉积 面积
解析几何的主力:复数

 

基本形式:

直线,线段

多边形

凸多边形 凸包
凸包算法的引进,卷包裹法

Graham扫描法
水平序的引进,共线凸包的补丁

http://irw.ncut.edu.tw/peterju/algorithm.html

求多条线段所有交点算法: line segment intersection, plane sweep algorithm扫描算法, sweep line扫描线,扫描线状态sweep-line status, 事件点调度队列event point queue, findIntersections, handleEventPoint, FindNewEvent
完美凸包算法

相关判定
两直线相交
两线段相交
点在任意多边形内的判定
点在凸多边形内的判定


经典问题
最小外接圆
近似O(n)的最小外接圆算法
点集直径
旋转卡壳,对踵点
多边形的三角剖分

数学 数论

最大公约数
Euclid算法
扩展的Euclid算法
同余方程 二元一次不定方程
同余方程组

 

线性方程组
高斯消元法
mod 2域上的线性方程组
整系数方程组的精确解法

矩阵
行列式的计算
利用矩阵乘法快速计算递推关系

分数
分数树
连分数逼近

数论计算
N的约数个数
phi(N)
求约数和
快速数论变换
……

素数问题
概率判素算法
概率因子分解

数据结构

组织结构
二叉堆
左偏树
二项树
胜者树
跳跃表
样式图标
斜堆
reap

统计结构
树状数组
虚二叉树
线段树
矩形面积并
圆形面积并

关系结构
Hash
并查集
路径压缩思想的应用

STL中的数据结构
vector
deque
set / map

 


动态规划  记忆化搜索

最长子序列系列问题
最长不下降子序列
最长公共子序列
最长公共不下降子序列


一类NP问题的动态规划解法

树型动态规划

背包问题

动态规划的优化
四边形不等式

二分
最小表示法

 KMP

Trie结构
后缀树/后缀数组
LCA/RMQ
有限状态自动机理论

排序
选择 / 冒泡
快速排序
堆排序
归并排序
基数排序
拓扑排序
排序网络

 








Dp状态设计与方程总结

1.不完全状态记录

<1>青蛙过河问题
<2>利用区间dp

2.背包类问题
<1> 0-1背包,经典问题
<2>无限背包,经典问题
<3>判定性背包问题
<4>带附属关系的背包问题
<5> + -1背包问题
<6>双背包求最优值
<7>构造三角形问题
<8>带上下界限制的背包问题(012背包)
3.线性的动态规划问题
<1>积木游戏问题
<2>决斗(判定性问题)
<3>圆的最大多边形问题
<4>统计单词个数问题
<5>棋盘分割
<6>日程安排问题
<7>最小逼近问题(求出两数之比最接近某数/两数之和等于某数等等)
<8>方块消除游戏(某区间可以连续消去求最大效益)
<9>资源分配问题
<10>数字三角形问题
<11>漂亮的打印
<12>邮局问题与构造答案
<13>最高积木问题
<14>两段连续和最大
<15>2次幂和问题
<16>N个数的最大M段子段和
<17>交叉最大数问题
4.判定性问题的dp(如判定整除、判定可达性等)
<1>K问题的dp
<2>特殊的模K问题,求最大(最小)K的数
<3>变换数问题
5.单调性优化的动态规划
<1>1-SUM问题
<2>2-SUM问题
<3>序列划分问题(单调队列优化)
6.剖分问题(多边形剖分/石子合并/圆的剖分/乘积最大)
<1>凸多边形的三角剖分问题
<2>乘积最大问题
<3>多边形游戏(多边形边上是操作符,顶点有权值)
<4>石子合并(N^3/N^2/NLogN各种优化)
7.贪心的动态规划
<1>最优装载问题
<2>部分背包问题
<3>乘船问题
<4>贪心策略
<5>双机调度问题Johnson算法
8.状态dp
<1>牛仔射击问题(博弈类)
<2>哈密顿路径的状态dp
<3>两支点天平平衡问题
<4>一个有向图的最接近二部图
9.树型dp
<1>完美服务器问题(每个节点有3种状态)
<2>小胖守皇宫问题
<3>网络收费问题
<4>树中漫游问题
<5>树上的博弈
<6>树的最大独立集问题
<7>树的最大平衡值问题
<8>构造树的最小环

 

 

你可能感兴趣的:(算法与数据结构/ACM)