以下基于3.0内核版本的源码进行讲解,驱动代码路径为drivers/misc/eeprom/at24.c。I2C核心代码路径为drivers/I2C
module_init(at24_init);
module_init()是一个宏定义,位于include/linux/init.h。
如果将驱动编译入内核,定义如下:
#define device_initcall(fn) __define_initcall("6",fn,6)
#define __initcall(fn) device_initcall(fn)
#define module_init(x) __initcall(x);
这样在内核初始化的时候就会直接对该驱动进行初始化了。关于内核初始化部分,后续再讲述。
如果以模块方式编译,定义如下:
#define module_init(initfn) \
static inline initcall_t __inittest(void) \
{ return initfn; } \
int init_module(void) __attribute__((alias(#initfn)));
__inittest仅仅是为了检测定义的函数是否符合initcall_t类型,如果不是__inittest类型在编译时将会报错
/*drivers/misc/eeprom/at24.c*/
static int __init at24_init(void)
{
if (!io_limit) {
pr_err("at24: io_limit must not be 0!\n");
return -EINVAL;
}
io_limit = rounddown_pow_of_two(io_limit);
return i2c_add_driver(&at24_driver);
}
/*include/linux/i2c.h*/
static inline int i2c_add_driver(struct i2c_driver *driver)
{
return i2c_register_driver(THIS_MODULE, driver);
}
注册函数
/*drivers/i2c/i2c-core.c*/
int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
{
int res;
/* add the driver to the list of i2c drivers in the driver core */
driver->driver.owner = owner;
driver->driver.bus = &i2c_bus_type;
/* When registration returns, the driver core
* will have called probe() for all matching-but-unbound devices.
*/
res = driver_register(&driver->driver);
……
INIT_LIST_HEAD(&driver->clients);
/* Walk the adapters that are already present */
i2c_for_each_dev(driver, __process_new_driver);
return 0;
}
EXPORT_SYMBOL(i2c_register_driver);
调用driver_register函数在总线上注册驱动
/*drivers/base/driver.c*/
int driver_register(struct device_driver *drv)
{
int ret;
struct device_driver *other;
……
ret = bus_add_driver(drv);
if (ret)
return ret;
ret = driver_add_groups(drv, drv->groups);
if (ret)
bus_remove_driver(drv);
return ret;
}
EXPORT_SYMBOL_GPL(driver_register);
/*drivers/base/bus.c*/
int bus_add_driver(struct device_driver *drv)
{
struct bus_type *bus;
struct driver_private *priv;
int error = 0;
bus = bus_get(drv->bus);
if (!bus)
return -EINVAL;
pr_debug("bus: '%s': add driver %s\n", bus->name, drv->name);
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv) {
error = -ENOMEM;
goto out_put_bus;
}
klist_init(&priv->klist_devices, NULL, NULL);
priv->driver = drv;
drv->p = priv;
priv->kobj.kset = bus->p->drivers_kset;
error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,
"%s", drv->name);//添加到总线链表
if (error)
goto out_unregister;
if (drv->bus->p->drivers_autoprobe) {
error = driver_attach(drv);
if (error)
goto out_unregister;
}
klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);
module_add_driver(drv->owner, drv);
}
设备和驱动开始匹配
/*drivers/base/dd.c*/
int driver_attach(struct device_driver *drv)
{
return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
}
EXPORT_SYMBOL_GPL(driver_attach);
通过next_device函数进行设备搜索,然后再通过__driver_attach函数进行匹配。直到next_device函数搜索到匹配设备,或者到链表尾端。
/*drivers/base/bus.c*/
int bus_for_each_dev(struct bus_type *bus, struct device *start,
void *data, int (*fn)(struct device *, void *))
{
struct klist_iter i;
struct device *dev;
int error = 0;
if (!bus)
return -EINVAL;
klist_iter_init_node(&bus->p->klist_devices, &i,
(start ? &start->p->knode_bus : NULL));
while ((dev = next_device(&i)) && !error)
error = fn(dev, data);
klist_iter_exit(&i);
return error;
}
next_device通过链表查询设备
/*drivers/base/bus.c*/
static struct device *next_device(struct klist_iter *i)
{
struct klist_node *n = klist_next(i);
struct device *dev = NULL;
struct device_private *dev_prv;
if (n) {
dev_prv = to_device_private_bus(n);
dev = dev_prv->device;
}
return dev;
}
匹配函数,通过driver_match_device函数去匹配。匹配完会通过driver_probe_device函数去调用probe函数。
/*drivers/base/dd.c*/
static int __driver_attach(struct device *dev, void *data)
{
struct device_driver *drv = data;
if (!driver_match_device(drv, dev))
return 0;
if (dev->parent) /* Needed for USB */
device_lock(dev->parent);
device_lock(dev);
if (!dev->driver)
driver_probe_device(drv, dev);
device_unlock(dev);
if (dev->parent)
device_unlock(dev->parent);
return 0;
}
这里来讲解一下,匹配对象。
主要涉及到以下几个参数:
/*drivers/misc/eeprom/at24.c*/
static const struct i2c_device_id at24_ids[] = {
{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
{ "at24", 0 },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);
static struct i2c_driver at24_driver = {
.driver = {
.name = "at24",
.owner = THIS_MODULE,
},
.probe = at24_probe,
.remove = __devexit_p(at24_remove),
.id_table = at24_ids,
};
/*arch/arm/mach-xxx/mach_xxx.c*/
static struct i2c_board_info at24xx[]={
{
I2C_BOARD_INFO("at24c02",0x50);
},
};
i2c_register_board_info(0,at24xx,ARRAY_SIZE(at24xx));
所谓的匹配是将i2c_driver和i2c_client进行匹配,主要是将at24_ids与at24xx进行匹配。接着回到上面的匹配函数。
/*drivers/base/base.h*/
static inline int driver_match_device(struct device_driver *drv,
struct device *dev)
{
return drv->bus->match ? drv->bus->match(dev, drv) : 1;
}
在这里调用了总线的match函数。在i2c_register_driver函数中,已经定义了总线参数 driver->driver.bus = &i2c_bus_type
我们来看一下这个结构体,对应的函数。
/*drivers/I2C/i2c_core.c*/
struct bus_type i2c_bus_type = {
.name = "i2c",
.match = i2c_device_match,
.probe = i2c_device_probe,
.remove = i2c_device_remove,
.shutdown = i2c_device_shutdown,
.pm = &i2c_device_pm_ops,
};
具体代码如下
/*drivers/I2C/i2c-core.c*/
static int i2c_device_match(struct device *dev, struct device_driver *drv)
{
struct i2c_client *client = i2c_verify_client(dev);
struct i2c_driver *driver;
if (!client)
return 0;
/* Attempt an OF style match */
if (of_driver_match_device(dev, drv))
return 1;
driver = to_i2c_driver(drv);
/* match on an id table if there is one */
if (driver->id_table)
return i2c_match_id(driver->id_table, client) != NULL;
return 0;
}
通过i2c_match_id函数进行最后的匹配
/*drivers/I2C/i2c-core.c*/
static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
const struct i2c_client *client)
{
while (id->name[0]) {
if (strcmp(client->name, id->name) == 0)
return id;
id++;
}
return NULL;
}
主要匹配设备的名字。到此就设备和驱动就匹配上了。