pytorchYOLOV4 训练数据生成

目录

step1:目录结构

step2:运行create.py 生成目标文件目录

step3:运行trans.py 得到训练所需的txt文件


本文参考darknet 生成训练数据的博文中的代码来修改得到 ,原文:https://blog.csdn.net/dcrmg/article/details/81296520,感谢原作者。

pytorch版本yolov4源码地址,感谢源码作者:

https://github.com/Tianxiaomo/pytorch-YOLOv4

上一篇博客写的是使用pytorch yolov4 的步骤可参考:https://blog.csdn.net/h649070/article/details/107492649

step1:目录结构

dataset

----------trainImage

----------validateImage

----------trainImageXML

----------validateImageXML

----------create.py

----------trans.py

step2:运行create.py 生成目标文件目录

create.py 文件代码如下

在数据库同级目录下直接运行

# -*- coding: utf-8 -*-
'''
作者:-牧野-
来源:CSDN
原文:https://blog.csdn.net/dcrmg/article/details/81296520
版权声明:本文为博主原创文章,转载请附上博文链接!
'''
import os
import shutil

def listname(path,idtxtpath):
    filelist = os.listdir(path)  # 该文件夹下所有的文件(包括文件夹)
    filelist.sort()
    f = open(idtxtpath, 'w')
    for files in filelist:  # 遍历所有文件
        Olddir = os.path.join(path, files)  # 原来的文件路径
        if os.path.isdir(Olddir):  # 如果是文件夹则跳过
            continue
        f.write(files)
        f.write('\n')
    f.close()
 
savepath = os.getcwd()
imgidtxttrainpath = savepath+"/trainImageId.txt"
imgidtxtvalpath = savepath + "/validateImageId.txt"

imgtrainpath = os.path.join(os.getcwd(),'trainImage')
imgvalpath = os.path.join(os.getcwd(),'validateImage')
listname(imgtrainpath,imgidtxttrainpath)
listname(imgvalpath,imgidtxtvalpath)

print ("trainImageId.txt && validateImageId.txt have been created!")

step3:运行trans.py 得到训练所需的txt文件

在同级目录下运行,代码如下:


import xml.etree.ElementTree as ET
import pickle
import string
import os
import shutil
from os import listdir, getcwd
from os.path import join
import cv2

sets = [('2012', 'train')]

classes = ['class1','class2']


wd = getcwd()
out_val_file = open(os.path.join(wd,'valset.txt'), 'w') 
out_train_file = open(os.path.join(wd,'trainset.txt'), 'w') 

def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id, flag, savepath):
    if flag == 0:
        in_file = open(savepath + '/trainImageXML/%s.xml' % (os.path.splitext(image_id)[0]),'r',encoding='utf-8')
        # out_file = open(savepath + '/trainImage/%s.txt' % (os.path.splitext(image_id)[0]), 'w')
        print(in_file)
        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')

        img = cv2.imread('./trainImage/' + str(image_id))
        h = img.shape[0]
        w = img.shape[1]
        out_train_file.write(savepath + '/trainImage/%s.jpg' % (os.path.splitext(image_id)[0]))
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            # b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
            #      float(xmlbox.find('ymax').text))
            b = (int(xmlbox.find('xmin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymin').text),
                 int(xmlbox.find('ymax').text))
            # bb = convert((w, h), b)
            bb = b
            out_train_file.write(" " + ",".join([str(a) for a in bb]) + ',' + str(cls_id))
        out_train_file.write('\n')
    elif flag == 1:
        in_file = open(savepath + '/validateImageXML/%s.xml' % (os.path.splitext(image_id)[0]),'r',encoding='utf-8')
        # out_file = open(savepath + '/validateImage/%s.txt' % (os.path.splitext(image_id)[0]), 'w')

        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')

        img = cv2.imread('./validateImage/' + str(image_id))
        h = img.shape[0]
        w = img.shape[1]
        out_val_file.write(savepath + '/validateImage/%s.jpg' % (os.path.splitext(image_id)[0]))
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            # b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
            #      float(xmlbox.find('ymax').text))
            b = (int(xmlbox.find('xmin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymin').text),
                 int(xmlbox.find('ymax').text))
            # bb = convert((w, h), b)
            bb = b
            out_val_file.write(" " + ",".join([str(a) for a in bb]) + ',' + str(cls_id))
        out_val_file.write('\n')
    return



for year, image_set in sets:
    savepath = wd#os.getcwd();

    idtxt = savepath + "/validateImageId.txt"
    pathtxt = savepath + "/validateImagePath.txt"
    image_ids = open(idtxt).read().strip().split()
    list_file = open(pathtxt, 'w')
    s = '\xef\xbb\xbf'
    for image_id in image_ids:
        nPos = image_id.find(s)
        if nPos >= 0:
            image_id = image_id[3:]
        list_file.write('%s/validateImage/%s\n' % (wd, image_id))
        print(image_id)
        convert_annotation(image_id, 1, savepath)
    list_file.close()

    idtxt = savepath + "/trainImageId.txt"
    pathtxt = savepath + "/trainImagePath.txt"
    image_ids = open(idtxt).read().strip().split()
    list_file = open(pathtxt, 'w')
    s = '\xef\xbb\xbf'
    for image_id in image_ids:
        nPos = image_id.find(s)
        if nPos >= 0:
            image_id = image_id[3:]
        list_file.write('%s/trainImage/%s\n' % (wd, image_id))
        print(image_id)
        convert_annotation(image_id, 0, savepath)
    list_file.close()


out_train_file.close()
out_val_file.close()

最后生成的valset.txt 和 trainset.txt即为最终使用的文件了;

转载请留言

你可能感兴趣的:(深度学习之源码学习)