hdu 4373 Mysterious For 【Lucas定理】

F**K.......364875103居然不是素数。。。居然分解成 97 * 3761599 !!

对于97使用lucas定理,3761599就直接逆元

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#ifdef _WIN32
#define i64 __int64
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
#define i64 long long
#define out64 "%lld\n"
#define in64 "%lld"
#endif
/************ for topcoder by zz1215 *******************/
#define FOR(i,a,b)      for( int i = (a) ; i <= (b) ; i ++)
#define FFF(i,a)        for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a,b)      for( int i = (a) ; i >= (b) ; i --)
#define S64(a)          scanf(in64,&a)
#define SS(a)           scanf("%d",&a)
#define LL(a)           ((a)<<1)
#define RR(a)           (((a)<<1)+1)
#define pb              push_back
#define CL(Q)           while(!Q.empty())Q.pop()
#define MM(name,what)   memset(name,what,sizeof(name))
#define MC(a,b)			memcpy(a,b,sizeof(b))
#define MAX(a,b)        ((a)>(b)?(a):(b))
#define MIN(a,b)        ((a)<(b)?(a):(b))
#define ABS(a)			((a)> 0 ?(a):-(a))
#define read            freopen("in.txt","r",stdin)
#define write           freopen("zz.txt","w",stdout)

const int inf = 0x3f3f3f3f;
const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
const double oo = 10e9;
const double eps = 10e-9;
const double pi = acos(-1.0);
const int maxn = 100111;
const i64 mod = 364875103;
const i64 mod1 = 97;
const i64 mod2 = 3761599;
const int maxc = 111;

i64 gcd(i64 _a, i64 _b)  
{  
    if (!_a || !_b)  
    {  
        return max(_a, _b);  
    }  
    i64 _t;  
    while ((_t = _a % _b))  
    {  
        _a = _b;  
        _b = _t;  
    }  
    return _b;  
}  
  
i64 ext_gcd (i64 _a, i64 _b, i64 &_x, i64 &_y)  
{  
    if (!_b)  
    {  
        _x = 1;  
        _y = 0;  
  
        return _a;  
    }  
    i64 _d = ext_gcd (_b, _a % _b, _x, _y);  
    i64 _t = _x;  
    _x = _y;  
    _y = _t - _a / _b * _y;  
    return _d;  
}  
  
i64 invmod (i64 _a, i64 _p)  
{  
    i64 _ans, _y;  
    ext_gcd (_a, _p, _ans, _y);  
    _ans < 0 ? _ans += _p : 0;  
    return _ans;  
}  

i64 dp[maxn];
i64 inv[maxn];
i64 c[maxc][maxc];
i64 n,m;
i64 ans;
i64 a[21];
i64 cx;

void init()
{
	for(int i=1;ix) return 0;
	i64 re=1;
	i64 dx = x%p;
	i64 dy = y%p;
	re*=c[dx][dy];
	dx = x/p;
	dy = y/p;
	if(dx || dy)
	{
		re*=lucas(dx,dy);
	}
	re%=p;
	return re;
}

i64 find(int x)
{
	i64 t1 = lucas(n+x-1,x);
	i64 t2 = dp[x]; 
	i64 temp = cx;
	temp *= t2-t1;
	temp %= mod2;
	temp = (temp+mod2)%mod2;
	temp *= mod1;
	temp += t1;
	temp %= mod;
	return temp;
}

void start()
{	
	dp[0]=1;
	i64 now,temp;
	for(int i=1;i<=m;i++)
	{
		now = n+i-1;
		dp[i]=dp[i-1]*now;
		dp[i]%=mod2;
		dp[i]*=inv[i];
		dp[i]%=mod2; 
	}	
	return ;
}


int main()
{
	init();
	int k,T;	
	cin>>T;
	for(int tt=1;tt<=T;tt++)
	{
		cin>>n>>m;
		start();
		cin>>k;
		for(int i=1;i<=k;i++)	
		{
			cin>>a[i];
			a[i]++;
		}
		ans=1;
		i64 pre = m;
		i64 now;
		for(int i=k;i>=1;i--)
		{
			now = pre - a[i]+1;
			ans *= find(now);
			ans %= mod;
			pre = a[i]-1;
		}
		cout<<"Case #"<



你可能感兴趣的:(hdu 4373 Mysterious For 【Lucas定理】)