在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。
一般情况下,工控机和各智能仪表通过RS485总线进行通信。RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。
在Win32下,可以使用两种编程方式实现串口通信,其一是使用ActiveX控件,这种方法程序简单,但欠灵活。其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活。本文我们只介绍API串口通信部分。
串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式)。
同步操作时,API函数会阻塞直到操作完成以后才能返回(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞。
无论那种操作方式,一般都通过四个步骤来完成:
Win32系统把文件的概念进行了扩展。无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的。该函数的原型为:
1
|
HANDLE
CreateFile
(
LPCTSTR
lpFileName
,
DWORD
dwDesiredAccess
,
DWORD
dwShareMode
,
LPSECURITY
_ATTRIBUTES
lpSecurityAttributes
,
DWORD
dwCreationDistribution
,
DWORD
dwFlagsAndAttributes
,
HANDLE
hTemplateFile
)
;
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
HANDLE
hCom
;
//全局变量,串口句柄
hCom
=
CreateFile
(
"COM1"
,
//COM1口
GENERIC_READ
|
GENERIC_WRITE
,
//允许读和写
0
,
//独占方式
NULL
,
OPEN_EXISTING
,
//打开而不是创建
0
,
//同步方式
NULL
)
;
if
(
hCom
==
(
HANDLE
)
-
1
)
{
AfxMessageBox
(
"打开COM失败!"
)
;
return
FALSE
;
}
return
TRUE
;
|
C++代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
HANDLE
hCom
;
//全局变量,串口句柄
hCom
=
CreateFile
(
"COM1"
,
//COM1口
GENERIC_READ
|
GENERIC_WRITE
,
//允许读和写
0
,
//独占方式
NULL
,
OPEN_EXISTING
,
//打开而不是创建
FILE_ATTRIBUTE_NORMAL
|
FILE_FLAG_OVERLAPPED
,
//重叠方式
NULL
)
;
if
(
hCom
==
INVALID_HANDLE_VALUE
)
{
AfxMessageBox
(
"打开COM失败!"
)
;
return
FALSE
;
}
return
TRUE
;
|
在打开通讯设备句柄后,常常需要对串口进行一些初始化配置工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、数据位数、奇偶校验和停止位数等信息。在查询或配置串口的属性时,都要用DCB结构来作为缓冲区。
一般用CreateFile打开串口后,可以调用GetCommState函数来获取串口的初始配置。要修改串口的配置,应该先修改DCB结构,然后再调用SetCommState函数设置串口。
DCB结构包含了串口的各项参数设置,下面仅介绍几个该结构常用的变量:
typedef struct _DCB{ ………
DWORD BaudRate;//波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一: CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400, CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400
DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查 …
BYTE ByteSize; // 通信字节位数,4—8
BYTE Parity; //指定奇偶校验方法。此成员可以有下列值: EVENPARITY 偶校验 NOPARITY 无校验 MARKPARITY 标记校验 ODDPARITY 奇校验
BYTE StopBits; //指定停止位的位数。此成员可以有下列值: ONESTOPBIT 1位停止位 TWOSTOPBITS 2位停止位
ON 5STOPBITS 1.5位停止位
GetCommState函数可以获得COM口的设备控制块,从而获得相关参数:
1
2
3
4
5
|
BOOL
GetCommState
(
HANDLE
hFile
,
//标识通讯端口的句柄
LPDCB
lpDCB
//指向一个设备控制块(DCB结构)的指针 );
SetCommState函数设置
COM口的设备控制块:
BOOL
SetCommState
(
HANDLE
hFile
,
LPDCB
lpDCB
)
;
|
除了在BCD中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。
BOOL SetupComm( HANDLE hFile, // 通信设备的句柄
DWORD dwInQueue, // 输入缓冲区的大小(字节数)
DWORD dwOutQueue // 输出缓冲区的大小(字节数) );
在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。超时的作用是在指定的时间内没有读入或发送指定数量的字符,ReadFile或WriteFile的操作仍然会结束。
要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。
读写串口的超时有两种:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延。总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读写操作的超时。
COMMTIMEOUTS结构的定义为:
1
2
3
4
5
6
7
|
typedef
struct
_COMMTIMEOUTS
{
DWORD
ReadIntervalTimeout
;
//读间隔超时
DWORD
ReadTotalTimeoutMultiplier
;
//读时间系数
DWORD
ReadTotalTimeoutConstant
;
//读时间常量
DWORD
WriteTotalTimeoutMultiplier
;
// 写时间系数
DWORD
WriteTotalTimeoutConstant
;
//写时间常量
}
COMMTIMEOUTS
,
*
LPCOMMTIMEOUTS
;
|
COMMTIMEOUTS结构的成员都以毫秒为单位。
总超时的计算公式是:总超时=时间系数×要求读/写的字符数+时间常量
例如,要读入10个字符,那么读操作的总超时的计算公式为:
读总超时=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant
可以看出:间隔超时和总超时的设置是不相关的,这可以方便通信程序灵活地设置各种超时。
如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。
在用重叠方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
SetupComm
(
hCom
,
1024
,
1024
)
;
//输入缓冲区和输出缓冲区的大小都是1024
COMMTIMEOUTS
TimeOuts
;
//设定读超时
TimeOuts
.
ReadIntervalTimeout
=
1000
;
TimeOuts
.
ReadTotalTimeoutMultiplier
=
500
;
TimeOuts
.
ReadTotalTimeoutConstant
=
5000
;
//设定写超时
TimeOuts
.
WriteTotalTimeoutMultiplier
=
500
;
TimeOuts
.
WriteTotalTimeoutConstant
=
2000
;
SetCommTimeouts
(
hCom
,
&
TimeOuts
)
;
//设置超时
DCB
dcb
;
GetCommState
(
hCom
,
&
dcb
)
;
dcb
.
BaudRate
=
9600
;
//波特率为9600
dcb
.
ByteSize
=
8
;
//每个字节有8位
dcb
.
Parity
=
NOPARITY
;
//无奇偶校验位
dcb
.
StopBits
=
TWOSTOPBITS
;
//两个停止位
SetCommState
(
hCom
,
&
dcb
)
;
PurgeComm
(
hCom
,
PURGE_TXCLEAR
|
PURGE_RXCLEAR
)
;
|
在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:
BOOL PurgeComm( HANDLE hFile, //串口句柄
DWORD dwFlags // 需要完成的操作 );
参数dwFlags指定要完成的操作,可以是下列值的组合:
PURGE_TXABORT 中断所有写操作并立即返回,即使写操作还没有完成。
PURGE_RXABORT 中断所有读操作并立即返回,即使读操作还没有完成。
PURGE_TXCLEAR 清除输出缓冲区
PURGE_RXCLEAR 清除输入缓冲区
我们使用ReadFile和WriteFile读写串口,下面是两个函数的声明:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
BOOL
ReadFile
(
HANDLE
hFile
,
//串口的句柄
// 读入的数据存储的地址,
// 即读入的数据将存储在以该指针的值为首地址的一片内存区
LPVOID
lpBuffer
,
// 要读入的数据的字节数
DWORD
nNumberOfBytesToRead
,
// 指向一个DWORD数值,该数值返回读操作实际读入的字节数
LPDWORD
lpNumberOfBytesRead
,
// 重叠操作时,该参数指向一个OVERLAPPED结构,同步操作时,该参数为NULL。
LPOVERLAPPED
lpOverlapped
)
;
BOOL
WriteFile
(
HANDLE
hFile
,
//串口的句柄
// 写入的数据存储的地址,
// 即以该指针的值为首地址的
LPCVOID
lpBuffer
,
//要写入的数据的字节数
DWORD
nNumberOfBytesToWrite
,
// 指向指向一个DWORD数值,该数值返回实际写入的字节数
LPDWORD
lpNumberOfBytesWritten
,
// 重叠操作时,该参数指向一个OVERLAPPED结构,
// 同步操作时,该参数为NULL。
LPOVERLAPPED
lpOverlapped
)
;
|
在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。
ReadFile和WriteFile函数是同步还是异步由CreateFile函数决定,如果在调用CreateFile创建句柄时指定了FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的操作就应该是重叠的;如果未指定重叠标志,则读写操作应该是同步的。ReadFile和WriteFile函数的同步或者异步应该和CreateFile函数相一致。
ReadFile函数只要在串口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲区,而且要等这些字符从串行口送出去后才算完成操作。
如果操作成功,这两个函数都返回TRUE。需要注意的是,当ReadFile和WriteFile返回FALSE时,不一定就是操作失败,线程应该调用GetLastError函数分析返回的结果。例如,在重叠操作时如果操作还未完成函数就返回,那么函数就返回FALSE,而且GetLastError函数返回ERROR_IO_PENDING。这说明重叠操作还未完成。
同步方式读写串口比较简单,下面先例举同步方式读写串口的代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
//同步读串口
char
str
[
100
]
;
DWORD
wCount
;
//读取的字节数
BOOL
bReadStat
;
bReadStat
=
ReadFile
(
hCom
,
str
,
100
,
&
wCount
,
NULL
)
;
if
(
!
bReadStat
)
{
AfxMessageBox
(
"读串口失败!"
)
;
return
FALSE
;
}
return
TRUE
;
//同步写串口
char
lpOutBuffer
[
100
]
;
DWORD
dwBytesWrite
=
100
;
COMSTAT
ComStat
;
DWORD
dwErrorFlags
;
BOOL
bWriteStat
;
ClearCommError
(
hCom
,
&
dwErrorFlags
,
&
ComStat
)
;
bWriteStat
=
WriteFile
(
hCom
,
lpOutBuffer
,
dwBytesWrite
,
&
dwBytesWrite
,
NULL
)
;
if
(
!
bWriteStat
)
{
AfxMessageBox
(
"写串口失败!"
)
;
}
PurgeComm
(
hCom
,
PURGE_TXABORT
|
PURGE_RXABORT
|
PURGE_TXCLEAR
|
PURGE_RXCLEAR
)
;
|
在重叠操作时,操作还未完成函数就返回。
重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。有两种方法可以等待操作完成:一种方法是用象WaitForSingleObject这样的等待函数来等待OVERLAPPED结构的hEvent成员;另一种方法是调用GetOverlappedResult函数等待,后面将演示说明。
下面我们先简单说一下OVERLAPPED结构和GetOverlappedResult函数:
OVERLAPPED结构
OVERLAPPED结构包含了重叠I/O的一些信息,定义如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
typedef
struct
_OVERLAPPED
{
// o
DWORD
Internal
;
DWORD
InternalHigh
;
DWORD
Offset
;
DWORD
OffsetHigh
;
HANDLE
hEvent
;
}
OVERLAPPED
;
|
在使用ReadFile和WriteFile重叠操作时,线程需要创建OVERLAPPED结构以供这两个函数使用。线程通过OVERLAPPED结构获得当前的操作状态,该结构最重要的成员是hEvent。hEvent是读写事件。当串口使用异步通讯时,函数返回时操作可能还没有完成,程序可以通过检查该事件得知是否读写完毕。
当调用ReadFile, WriteFile 函数的时候,该成员会自动被置为无信号状态;当重叠操作完成后,该成员变量会自动被置为有信号状态。
GetOverlappedResult函数 BOOL GetOverlappedResult( HANDLE hFile, // 串口的句柄 // 指向重叠操作开始时指定的OVERLAPPED结构 LPOVERLAPPED lpOverlapped, // 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。 LPDWORD lpNumberOfBytesTransferred, // 该参数用于指定函数是否一直等到重叠操作结束。 // 如果该参数为TRUE,函数直到操作结束才返回。 // 如果该参数为FALSE,函数直接返回,这时如果操作没有完成, // 通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。 BOOL bWait );
该函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
char
lpInBuffer
[
1024
]
;
DWORD
dwBytesRead
=
1024
;
COMSTAT
ComStat
;
DWORD
dwErrorFlags
;
OVERLAPPED
m_osRead
;
memset
(
&
m_osRead
,
0
,
sizeof
(
OVERLAPPED
)
)
;
m_osRead
.
hEvent
=
CreateEvent
(
NULL
,
TRUE
,
FALSE
,
NULL
)
;
ClearCommError
(
hCom
,
&
dwErrorFlags
,
&
ComStat
)
;
dwBytesRead
=
min
(
dwBytesRead
,
(
DWORD
)
ComStat
.
cbInQue
)
;
if
(
!
dwBytesRead
)
return
FALSE
;
BOOL
bReadStatus
;
bReadStatus
=
ReadFile
(
hCom
,
lpInBuffer
,
dwBytesRead
,
&
dwBytesRead
,
&
m_osRead
)
;
if
(
!
bReadStatus
)
//如果ReadFile函数返回FALSE
{
if
(
GetLastError
(
)
==
ERROR_IO_PENDING
)
//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作
{
WaitForSingleObject
(
m_osRead
.
hEvent
,
2000
)
;
//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
PurgeComm
(
hCom
,
PURGE_TXABORT
|
PURGE_RXABORT
|
PURGE_TXCLEAR
|
PURGE_RXCLEAR
)
;
return
dwBytesRead
;
}
return
0
;
}
PurgeComm
(
hCom
,
PURGE_TXABORT
|
PURGE_RXABORT
|
PURGE_TXCLEAR
|
PURGE_RXCLEAR
)
;
return
dwBytesRead
;
|
在使用ReadFile 函数进行读操作前,应先使用ClearCommError函数清除错误。
ClearCommError函数的原型如下:
1
2
3
4
5
|
BOOL
ClearCommError
(
HANDLE
hFile
,
// 串口句柄LPDWORD lpErrors, // 指向接收错误码的变量
LPCOMSTAT
lpStat
// 指向通讯状态缓冲区 );
|
该函数获得通信错误并报告串口的当前状态,同时,该函数清除串口的错误标志以便继续输入、输出操作。
参数lpStat指向一个COMSTAT结构,该结构返回串口状态信息。
COMSTAT结构 COMSTAT结构包含串口的信息,
结构定义如下:
typedef struct _COMSTAT { // cst DWORD fCtsHold : 1; // Tx waiting for CTS signal DWORD fDsrHold : 1; // Tx waiting for DSR signal DWORD fRlsdHold : 1; // Tx waiting for RLSD signal DWORD fXoffHold : 1; // Tx waiting, XOFF char rec''d DWORD fXoffSent : 1; // Tx waiting, XOFF char sent DWORD fEof : 1; // EOF character sent DWORD fTxim : 1; // character waiting for Tx DWORD fReserved : 25; // reserved DWORD cbInQue; // bytes in input buffer DWORD cbOutQue; // bytes in output buffer } COMSTAT, *LPCOMSTAT;
本文只用到了cbInQue成员变量,该成员变量的值代表输入缓冲区的字节数。
最后用PurgeComm函数清空串口的输入输出缓冲区。
这段代码用WaitForSingleObject函数来等待OVERLAPPED结构的hEvent成员,下面我们再演示一段调用GetOverlappedResult函数等待的
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
char
lpInBuffer
[
1024
]
;
DWORD
dwBytesRead
=
1024
;
BOOL
bReadStatus
;
DWORD
dwErrorFlags
;
COMSTAT
ComStat
;
OVERLAPPED
m_osRead
;
ClearCommError
(
hCom
,
&
dwErrorFlags
,
&
ComStat
)
;
if
(
!
ComStat
.
cbInQue
)
return
0
;
dwBytesRead
=
min
(
dwBytesRead
,
(
DWORD
)
ComStat
.
cbInQue
)
;
bReadStatus
=
ReadFile
(
hCom
,
lpInBuffer
,
dwBytesRead
,
&
dwBytesRead
,
&
m_osRead
)
;
if
(
!
bReadStatus
)
//如果ReadFile函数返回FALSE
{
if
(
GetLastError
(
)
==
ERROR_IO_PENDING
)
{
GetOverlappedResult
(
hCom
,
&
m_osRead
,
&
dwBytesRead
,
TRUE
)
;
// GetOverlappedResult函数的最后一个参数设为TRUE,
//函数会一直等待,直到读操作完成或由于错误而返回。
return
dwBytesRead
;
}
return
0
;
}
return
dwBytesRead
;
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
char
buffer
[
1024
]
;
DWORD
dwBytesWritten
=
1024
;
DWORD
dwErrorFlags
;
COMSTAT
ComStat
;
OVERLAPPED
m_osWrite
;
BOOL
bWriteStat
;
bWriteStat
=
WriteFile
(
hCom
,
buffer
,
dwBytesWritten
,
&
dwBytesWritten
,
&
m_OsWrite
)
;
if
(
!
bWriteStat
)
{
if
(
GetLastError
(
)
==
ERROR_IO_PENDING
)
{
WaitForSingleObject
(
m_osWrite
.
hEvent
,
1000
)
;
return
dwBytesWritten
;
}
return
0
;
}
return
dwBytesWritten
;
|
利用API函数关闭串口非常简单,只需使用CreateFile函数返回的句柄作为参数调用CloseHandle即可:
1
2
3
|
BOOL
CloseHandle
(
HANDLE
hObject
;
//handle to object to close
)
;
|