sysbench是一个模块化的、跨平台、多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况。
目前sysbench代码托管在launchpad上,项目地址:https://launchpad.net/sysbench(原来的官网 http://sysbench.sourceforge.net 已经不可用),源码采用bazaar管理。
注:本文所有的测试都是基于linux操作系统和mysql数据库的。
#./autogen.sh
#./configure
#make
注意事项:./configure命令,sysbench默认是支持MySQL的benchmarking的,如果不加任何选项则要求保证MySQL的安装路径都是默认的标准路径,headfile位于/usr/include目录下,libraries位于/usr/lib/目录下。因为我的MySQL是源码编译安装的,安装路径是放在/usr/local/mysql下,所以这里要添加相应的选项命令:
./configure --prefix=/usr/local/sysbench --with-mysql=/usr/local/mysql \
--with-mysql-includes=/usr/local/mysql/include/ \
--with-mysql-libs=/usr/local/mysql/lib/
这样就可以看到/usr/local/sysbench下有一个可执行文件sysbench,这就是sysbench的主程序。
sysbench目前可以进行如下几个方面的性能测试:
- fileio - File I/O test #磁盘io性能
- cpu - CPU performance test #CUP性能
- memory - Memory functions speed test #内存性能
- threads - Threads subsystem performance test #POSIX线程性能
- mutex - Mutex performance test #调度程序性能
- oltp - OLTP test #数据库性能(OLTP基准测试)
注:在0.4版本的--test选项中是可以直接选用oltp模式,但是在0.4.12.1.1以后oltp测试就转换成调用lua脚本来进行测试了,脚本主要存放在tests/db目录下。这样用户就可以根据自己的系统定制lua脚本,这样的测试就能更精确的测试业务的性能。
接下来我们来分别看一下各个模式的相关参数、测试方法和结果分析。
sysbench的基本命令格式为:
sysbench –test=< test-name> [options]… < command>
主要分为三个部分:
这部分是指定测试类型,基本类型有fileio,cpu,memory,threads,mutex,oltp(或者指定lua脚本)
这部分包括测试需要的各种选项,有全局的也有每个测试模式自由的选项
(每个测试模式的选项可以用./sysbench –test=< test-name> help来获取)
控制命令,总共有五个
prepare #准备测试,主要是生成测试数据
run #执行测试,根据选项限制来执行测试
cleanup #清除准备阶段生成的测试数据
help #获取帮助文档
version #获取版本信息
–num-threads=N number of threads to use [1] #测试时使用的线程数
–max-requests=N limit for total number of requests [10000] #测试过程最多执行多少次请求
–max-time=N limit for total execution time in seconds [0] #测试过程总共执行多长时间(和–max-requests效果同样,但是两个同时限定的时候谁优先还没有测试)
–report-interval=N periodically report intermediate statistics with a specified interval in seconds. 0 disables intermediate reports [0] #每隔多少秒输出测试概况(这个过程你可以观察到mysql redolog的切换情况)
–db-driver=STRING specifies database driver to use (‘help’ to get list of available drivers) #指定需求测试的数据库类型,默认是mysql
#mysql链接选项
–mysql-host=[LIST,…] MySQL server host [localhost] #mysql主机地址
–mysql-port=N MySQL server port [3306] #mysql端口
–mysql-socket=[LIST,…] MySQL socket #mysql socket文件位置,指定这个之后 其他的链接选项均可以不指定
–mysql-user=STRING MySQL user [sbtest] #用来测试的mysql用户名
–mysql-password=STRING MySQL password [] #密码
–mysql-db=STRING MySQL database name [sbtest] #测试数据库名 默认sbtest
[root@centostest sysbench]# ./sysbench --test=fileio help
sysbench 0.5: multi-threaded system evaluation benchmark
fileio options:
--file-num=N number of files to create [128]
--file-block-size=N block size to use in all IO operations [16384]
--file-total-size=SIZE total size of files to create [2G]
--file-test-mode=STRING test mode {seqwr, seqrewr, seqrd, rndrd, rndwr, rndrw}
--file-io-mode=STRING file operations mode {sync,async,mmap} [sync]
--file-extra-flags=STRING additional flags to use on opening files {sync,dsync,direct} []
--file-fsync-freq=N do fsync() after this number of requests (0 - don't use fsync()) [100]
--file-fsync-all=[on|off] do fsync() after each write operation [off]
--file-fsync-end=[on|off] do fsync() at the end of test [on]
--file-fsync-mode=STRING which method to use for synchronization {fsync, fdatasync} [fsync]
--file-merged-requests=N merge at most this number of IO requests if possible (0 - don't merge) [0]
--file-rw-ratio=N reads/writes ratio for combined test [1.5]
No help available for test 'fileio'.
参数详解:
–file-num=N 代表生成测试文件的数量,默认为128。
–file-block-size=N 测试时所使用文件块的大小,如果想磁盘针对innodb存储引擎进行测试,可以将其设置为16384,即innodb存储引擎页的大小。默认为16384。
–file-total-size=SIZE 创建测试文件的总大小,默认为2G大小。
–file-test-mode=STRING 文件测试模式,包含:seqwr(顺序写), seqrewr(顺序读写), seqrd(顺序读), rndrd(随机读), rndwr(随机写), rndrw(随机读写)。
–file-io-mode=STRING 文件操作的模式,sync(同步),async(异步),fastmmap(快速mmap),slowmmap(慢速mmap),默认为sync同步模式。
–file-async-backlog=N 对应每个线程队列的异步操作数,默认为128。
–file-extra-flags=STRING 打开文件时的选项,这是与API相关的参数。
–file-fsync-freq=N 执行fsync()函数的频率。fsync主要是同步磁盘文件,因为可能有系统和磁盘缓冲的关系。 0代表不使用fsync函数。默认值为100。
–file-fsync-all=[on|off] 每执行完一次写操作,就执行一次fsync。默认为off。
–file-fsync-end=[on|off] 在测试结束时执行fsync函数。默认为on。
–file-fsync-mode=STRING文件同步函数的选择,同样是和API相关的参数,由于多个操作系统对于fdatasync支持不同,因此不建议使用fdatasync。默认为fsync。
–file-merged-requests=N 大多情况下,合并可能的IO的请求数,默认为0。
–file-rw-ratio=N 测试时的读写比例,默认时为1.5,即可3:2。
测试总大小为5G的10个文件的随机读写性能:
sysbench --test=fileio --file-num=10 --file-total-size=5G prepare
sysbench --test=fileio --file-total-size=5G --file-test-mode=rndrw --max-time=180 --max-requests=100000000 --num-threads=16 --init-rng=on --file-num=10 --file-extra-flags=direct --file-fsync-freq=0 --file-block-size=16384 run
sysbench 0.4.12: multi-threaded system evaluation benchmark
Running the test with following options:
Number of threads: 16
Initializing random number generator from timer.
Random number generator seed is 0 and will be ignored
Extra file open flags: 4000
10 files, 512Mb each
5Gb total file size
Block size 16Kb
Number of random requests for random IO: 100000000
Read/Write ratio for combined random IO test: 1.50
Calling fsync() at the end of test, Enabled.
Using synchronous I/O mode
Doing random r/w test
Threads started!
Time limit exceeded, exiting...
(last message repeated 15 times)
Done.
Operations performed: 89247 reads, 59488 writes, 0 Other = 148735 Total
Read 1.3618Gb Written 929.5Mb Total transferred 2.2695Gb (12.888Mb/sec)
824.84 Requests/sec executed
General statistics:
total time: 180.3188s
total number of events: 148735
total time taken by event execution: 2882.8395
response time:
min: 0.08ms
avg: 19.38ms
max: 953.75ms
approx. 95 percentile: 158.81ms
Threads fairness:
events (avg/stddev): 9295.9375/371.20
execution time (avg/stddev): 180.1775/0.07
主要看这行输出的信息:
Read 1.3618Gb Written 929.5Mb Total transferred 2.2695Gb (12.888Mb/sec)
824.84 Requests/sec executed
这行信息表示:在180秒时间里面总共完成随机读取1.3618G数据,写入929.5Mb数据,平均每秒随机读写的效率为12.888Mb/秒,IOPS为824.84 Requests/sec
因为是虚拟机,所有磁盘的表现还是比较差的。
[root@centostest sysbench]# sysbench --test=fileio --file-num=10 --file-total-size=5G cleanup
sysbench 0.4.12: multi-threaded system evaluation benchmark
Removing test files...
[root@centostest sysbench]# sysbench --test=cpu help
sysbench 0.4.12: multi-threaded system evaluation benchmark
cpu options:
--cpu-max-prime=N upper limit for primes generator [10000]
参数详解:
–cpu-max-prime=N 用来选项指定最大的素数,具体参数可以根据CPU的性能来设置,默认为10000
根据官网的介绍可知:CPU测试使用64位整数,测试计算素数直到某个最大值所需要的时间。
sysbench --test=cpu --cpu-max-prime=20000 run
输出如下:
[root@centostest sysbench]# sysbench --test=cpu --cpu-max-prime=20000 run
sysbench 0.4.12: multi-threaded system evaluation benchmark
Running the test with following options:
Number of threads: 1
Random number generator seed is 0 and will be ignored
Doing CPU performance benchmark
Primer numbers limit: 20000
Threads started!
Done.
General statistics:
total time: 28.9293s
total number of events: 10000
total time taken by event execution: 28.8916
response time:
min: 2.51ms
avg: 2.89ms
max: 7.46ms
approx. 95 percentile: 3.49ms
Threads fairness:
events (avg/stddev): 10000.0000/0.00
execution time (avg/stddev): 28.8916/0.00
我们只需要关心测试的总时间(total time)即可(越小越忧)。
CPU性能测试有一个需要注意的地方,上面的测试只使用了一个线程,如果在两个cpu processor不同的电脑上做比较,这是不公平的。公平的做法是指定合理的线程数,如下所示:
sysbench --test=cpu --num-threads=`grep "processor" /proc/cpuinfo | wc -l` --cpu-max-prime=20000 run
补充知识:
查看CPU核数的方法
查看物理cpu个数
grep "physical id" /proc/cpuinfo | sort -u | wc -l
查看核心数量
grep "core id" /proc/cpuinfo | sort -u | wc -l
查看线程数量
grep "processor" /proc/cpuinfo | sort -u | wc -l
在sysbench的测试中,–num-threads取值为”线程数量”即可,再大的值没有什么意义,对测试结果也没有什么影响。
[root@centostest sysbench]# ./sysbench --test=memory help
sysbench 0.5: multi-threaded system evaluation benchmark
memory options:
--memory-block-size=SIZE size of memory block for test [1K]
--memory-total-size=SIZE total size of data to transfer [100G]
--memory-scope=STRING memory access scope {global,local} [global]
--memory-hugetlb=[on|off] allocate memory from HugeTLB pool [off]
--memory-oper=STRING type of memory operations {read, write, none} [write]
--memory-access-mode=STRING memory access mode {seq,rnd} [seq]
No help available for test 'memory'.
参数详解:
–memory-block-size=SIZE 测试内存块的大小,默认为1K
–memory-total-size=SIZE 数据传输的总大小,默认为100G
–memory-scope=STRING 内存访问的范围,包括全局和本地范围,默认为global
–memory-hugetlb=[on|off] 是否从HugeTLB池分配内存的开关,默认为off
–memory-oper=STRING 内存操作的类型,包括read, write, none,默认为write
–memory-access-mode=STRING 内存访问模式,包括seq,rnd两种模式,默认为seq
内存测试测试了内存的连续读写性能。
./sysbench --test=memory --memory-block-size=8K --memory-total-size=1G --num-threads=16 run
输出结果如下:
[root@centostest sysbench]# ./sysbench --test=memory --memory-block-size=8K --memory-total-size=1G --num-threads=16 run
sysbench 0.5: multi-threaded system evaluation benchmark
Running the test with following options:
Number of threads: 16
Random number generator seed is 0 and will be ignored
Initializing worker threads...
Threads started!
Operations performed: 131072 (626689.49 ops/sec)
1024.00 MB transferred (4896.01 MB/sec)
General statistics:
total time: 0.2091s
total number of events: 131072
total time taken by event execution: 2.3239s
response time:
min: 0.00ms
avg: 0.02ms
max: 50.38ms
approx. 95 percentile: 0.00ms
Threads fairness:
events (avg/stddev): 8192.0000/937.69
execution time (avg/stddev): 0.1452/0.03
[root@centostest sysbench]# ./sysbench --test=threads help
sysbench 0.5: multi-threaded system evaluation benchmark
threads options:
--thread-yields=N number of yields to do per request [1000]
--thread-locks=N number of locks per thread [8]
No help available for test 'threads'.
参数详解:
–thread-yields=N 指定每个请求的压力,默认为1000
–thread-locks=N 指定每个线程的锁数量,默认为8
测试线程调度器的性能。对于高负载情况下测试线程调度器的行为非常有用。
sysbench --test=threads --num-threads=64 run
下面是输出结果:
[root@centostest sysbench]# sysbench --test=threads --num-threads=64 run
sysbench 0.4.12: multi-threaded system evaluation benchmark
Running the test with following options:
Number of threads: 64
Random number generator seed is 0 and will be ignored
Doing thread subsystem performance test
Thread yields per test: 1000 Locks used: 8
Threads started!
Done.
General statistics:
total time: 9.4415s
total number of events: 10000
total time taken by event execution: 602.1637
response time:
min: 0.35ms
avg: 60.22ms
max: 479.03ms
approx. 95 percentile: 126.27ms
Threads fairness:
events (avg/stddev): 156.2500/4.82
execution time (avg/stddev): 9.4088/0.02
关注的性能指标也是total time越小越忧。
[root@centostest sysbench]# ./sysbench --test=mutex help
sysbench 0.5: multi-threaded system evaluation benchmark
mutex options:
--mutex-num=N total size of mutex array [4096]
--mutex-locks=N number of mutex locks to do per thread [50000]
--mutex-loops=N number of empty loops to do inside mutex lock [10000]
No help available for test 'mutex'.
参数详解:
–mutex-num=N 数组互斥的总大小。默认是4096
–mutex-locks=N 每个线程互斥锁的数量。默认是50000
–mutex-loops=N 内部互斥锁的空循环数量。默认是10000
测试互斥锁的性能,方式是模拟所有线程在同一时刻并发运行,并都短暂请求互斥锁。
./sysbench --test=mutex --num-threads=16 --mutex-num=2048 --mutex-locks=1000000 --mutex-loops=5000 run
结果输出如下:
[root@centostest sysbench]# ./sysbench --test=mutex --num-threads=16 --mutex-num=2048 --mutex-locks=1000000 --mutex-loops=5000 run
sysbench 0.5: multi-threaded system evaluation benchmark
Running the test with following options:
Number of threads: 16
Random number generator seed is 0 and will be ignored
Initializing worker threads...
Threads started!
General statistics:
total time: 0.8856s
total number of events: 16
total time taken by event execution: 13.7792s
response time:
min: 832.79ms
avg: 861.20ms
max: 880.81ms
approx. 95 percentile: 878.94ms
Threads fairness:
events (avg/stddev): 1.0000/0.00
execution time (avg/stddev): 0.8612/0.01
由于sysbench0.5中已经不存在oltp测试模式了,所以使用命令./sysbench --test=oltp help
无法获取好帮助信息,还好0.4和0.5的参数都是兼容的,所以我们这里用0.4的帮助信息来说明:
[root@centostest sysbench]# ./sysbench --help=oltp help
Usage:
sysbench [general-options]... --test= [test-options]... command
General options:
--num-threads=N number of threads to use [1]
--max-requests=N limit for total number of requests [10000]
--max-time=N limit for total execution time in seconds [0]
--forced-shutdown=STRING amount of time to wait after --max-time before forcing shutdown [off]
--thread-stack-size=SIZE size of stack per thread [32K]
--init-rng=[on|off] initialize random number generator [off]
--seed-rng=N seed for random number generator, ignored when 0 [0]
--tx-rate=N target transaction rate (tps) [0]
--tx-jitter=N target transaction variation, in microseconds [0]
--report-interval=N periodically report intermediate statistics with a specified interval in seconds. 0 disables intermediate reports [0]
--report-checkpoints=[LIST,...]dump full statistics and reset all counters at specified points in time. The argument is a list of comma-separated values representing the amount of time in seconds elapsed from start of test when report checkpoint(s) must be performed. Report checkpoints are off by default. []
--test=STRING test to run
--debug=[on|off] print more debugging info [off]
--validate=[on|off] perform validation checks where possible [off]
--help=[on|off] print help and exit
--version=[on|off] print version and exit
Log options:
--verbosity=N verbosity level {5 - debug, 0 - only critical messages} [4]
--percentile=N percentile rank of query response times to count [95]
Compiled-in tests:
fileio - File I/O test
cpu - CPU performance test
memory - Memory functions speed test
threads - Threads subsystem performance test
mutex - Mutex performance test
oltp - OLTP test
Commands: prepare run cleanup help version
See 'sysbench --test= help' for a list of options for each test.
参数详解:
–oltp-test-mode=STRING 执行模式{simple,complex(advanced transactional),nontrx(non-transactional),sp}。默认是complex
–oltp-reconnect-mode=STRING 重新连接模式{session(不使用重新连接。每个线程断开只在测试结束),transaction(在每次事务结束后重新连接),query(在每个SQL语句执行完重新连接),random(对于每个事务随机选择以上重新连接模式)}。默认是session
–oltp-sp-name=STRING 存储过程的名称。默认为空
–oltp-read-only=[on|off] 只读模式。Update,delete,insert语句不可执行。默认是off
–oltp-skip-trx=[on|off] 省略begin/commit语句。默认是off
–oltp-range-size=N 查询范围。默认是100
–oltp-point-selects=N number of point selects [10]
–oltp-simple-ranges=N number of simple ranges [1]
–oltp-sum-ranges=N number of sum ranges [1]
–oltp-order-ranges=N number of ordered ranges [1]
–oltp-distinct-ranges=N number of distinct ranges [1]
–oltp-index-updates=N number of index update [1]
–oltp-non-index-updates=N number of non-index updates [1]
–oltp-nontrx-mode=STRING 查询类型对于非事务执行模式{select, update_key, update_nokey, insert, delete} [select]
–oltp-auto-inc=[on|off] AUTO_INCREMENT是否开启。默认是on
–oltp-connect-delay=N 在多少微秒后连接数据库。默认是10000
–oltp-user-delay-min=N 每个请求最短等待时间。单位是ms。默认是0
–oltp-user-delay-max=N 每个请求最长等待时间。单位是ms。默认是0
–oltp-table-name=STRING 测试时使用到的表名。默认是sbtest
–oltp-table-size=N 测试表的记录数。默认是10000
–oltp-dist-type=STRING 分布的随机数{uniform(均匀分布),Gaussian(高斯分布),special(空间分布)}。默认是special
–oltp-dist-iter=N 产生数的迭代次数。默认是12
–oltp-dist-pct=N 值的百分比被视为’special’ (for special distribution)。默认是1
–oltp-dist-res=N ‘special’的百分比值。默认是75
[root@centostest sysbench]# ./sysbench --mysql-host=127.0.0.1 --mysql-port=3166 --mysql-user=root --mysql-password=123456 --test=tests/db/oltp.lua --oltp_tables_count=1 --oltp-table-size=1000000 --rand-init=on prepare
sysbench 0.5: multi-threaded system evaluation benchmark
Creating table 'sbtest1'...
Inserting 1000000 records into 'sbtest1'
……………………
使用128线程(–num-threads=128)测试60秒(–max-time=60)每10秒输出一次测试信息(–report-interval=10)
./sysbench --mysql-host=127.0.0.1 --mysql-port=3166 --mysql-user=root --mysql-password=123456 --test=tests/db/oltp.lua --oltp_tables_count=1 --oltp-table-size=1000000 --num-threads=128 --oltp-read-only=off --report-interval=10 --rand-type=uniform --max-time=60 --max-requests=0 run
测试结果输出如下:
[root@centostest sysbench]# ./sysbench --mysql-host=127.0.0.1 --mysql-port=3166 --mysql-user=root --mysql-password=123456 --test=tests/db/oltp.lua --oltp_tables_count=1 --oltp-table-size=1000000 --num-threads=128 --oltp-read-only=off --report-interval=10 --rand-type=uniform --max-time=60 --max-requests=0 run
sysbench 0.5: multi-threaded system evaluation benchmark
Running the test with following options:
Number of threads: 128
Report intermediate results every 10 second(s)
Random number generator seed is 0 and will be ignored
Initializing worker threads...
Threads started!
[ 10s] threads: 128, tps: 63.17, reads: 957.71, writes: 253.70, response time: 6659.14ms (95%), errors: 0.00, reconnects: 0.00
[ 20s] threads: 128, tps: 38.10, reads: 615.56, writes: 169.59, response time: 4702.80ms (95%), errors: 0.00, reconnects: 0.00
[ 30s] threads: 128, tps: 43.10, reads: 627.16, writes: 154.61, response time: 7544.47ms (95%), errors: 0.00, reconnects: 0.00
[ 40s] threads: 128, tps: 27.70, reads: 364.70, writes: 119.80, response time: 7278.28ms (95%), errors: 0.00, reconnects: 0.00
[ 50s] threads: 128, tps: 36.10, reads: 399.28, writes: 135.69, response time: 8400.39ms (95%), errors: 0.00, reconnects: 0.00
[ 60s] threads: 128, tps: 21.80, reads: 434.42, writes: 90.30, response time: 11977.08ms (95%), errors: 0.00, reconnects: 0.00
OLTP test statistics:
queries performed:
read: 33992
write: 9712
other: 4856
total: 48560
transactions: 2428 (39.27 per sec.)
read/write requests: 43704 (706.81 per sec.)
other operations: 4856 (78.53 per sec.)
ignored errors: 0 (0.00 per sec.)
reconnects: 0 (0.00 per sec.)
General statistics:
total time: 61.8331s
total number of events: 2428
total time taken by event execution: 7830.4825s
response time:
min: 210.50ms
avg: 3225.08ms
max: 11983.87ms
approx. 95 percentile: 8024.33ms
Threads fairness:
events (avg/stddev): 18.9688/2.14
execution time (avg/stddev): 61.1756/0.40
主要关注如下几个值:
transactions: 2428 (39.27 per sec.)
read/write requests: 43704 (706.81 per sec.)
other operations: 4856 (78.53 per sec.)
在sysbench0.4的后期版本中sysbench已经取消了test中的oltp模式,换而代之的是oltp的lua脚本。这一改变大大的提升了sysbench的灵活性。用户可以结合业务来定制lua脚本,这样能更精确的测试出适用于此业务的数据库性能指标。
这次我们使用sysbench-0.4.12-1.1来看看默认的lua脚本做了哪些工作,以及我们怎么来定制lua脚本。
oltp的测试脚本默认存放在tests/db下,这个目录下有很多脚本,在oltp基准测试中我们用到比较多的是common.lua和oltp.lua
[root@ol5-112 db]# pwd
/root/sysbench-0.4.12-1.1/sysbench/tests/db
[root@ol5-112 db]# ll
total 72
-rw-r--r-- 1 root root 3585 Jul 28 09:32 common.lua
-rw-r--r-- 1 root root 340 Jul 28 09:32 delete.lua
-rw-r--r-- 1 root root 830 Jul 28 09:32 insert.lua
-rw-r--r-- 1 root root 12088 Jul 28 09:32 Makefile
-rw-r--r-- 1 root root 1020 Jul 28 09:32 Makefile.am
-rw-r--r-- 1 root root 11569 Jul 28 09:32 Makefile.in
-rw-r--r-- 1 root root 2925 Jul 28 09:32 oltp.lua
-rw-r--r-- 1 root root 342 Jul 28 09:32 oltp_simple.lua
-rw-r--r-- 1 root root 425 Jul 28 09:32 parallel_prepare.lua
-rw-r--r-- 1 root root 343 Jul 28 09:32 select.lua
-rw-r--r-- 1 root root 3964 Jul 28 09:32 select_random_points.lua
-rw-r--r-- 1 root root 4066 Jul 28 09:32 select_random_ranges.lua
-rw-r--r-- 1 root root 343 Jul 28 09:32 update_index.lua
-rw-r--r-- 1 root root 552 Jul 28 09:32 update_non_index.lua
首先来看common.lua
-- Input parameters
-- oltp-tables-count - number of tables to create
-- oltp-secondary - use secondary key instead PRIMARY key for id column
--
--
-- 创建表,插入测试数据
function create_insert(table_id)
local index_name
local i
local j
local query
if (oltp_secondary) then
index_name = "KEY xid"
else
index_name = "PRIMARY KEY"
end
i = table_id
print("Creating table 'sbtest" .. i .. "'...")
if (db_driver == "mysql") then
query = [[
CREATE TABLE sbtest]] .. i .. [[ (
id INTEGER UNSIGNED NOT NULL ]] ..
((oltp_auto_inc and "AUTO_INCREMENT") or "") .. [[,
k INTEGER UNSIGNED DEFAULT '0' NOT NULL,
c CHAR(120) DEFAULT '' NOT NULL,
pad CHAR(60) DEFAULT '' NOT NULL,
]] .. index_name .. [[ (id)
) /*! ENGINE = ]] .. mysql_table_engine ..
" MAX_ROWS = " .. myisam_max_rows .. " */"
elseif (db_driver == "pgsql") then
query = [[
CREATE TABLE sbtest]] .. i .. [[ (
id SERIAL NOT NULL,
k INTEGER DEFAULT '0' NOT NULL,
c CHAR(120) DEFAULT '' NOT NULL,
pad CHAR(60) DEFAULT '' NOT NULL,
]] .. index_name .. [[ (id)
) ]]
elseif (db_driver == "drizzle") then
query = [[
CREATE TABLE sbtest (
id INTEGER NOT NULL ]] .. ((oltp_auto_inc and "AUTO_INCREMENT") or "") .. [[,
k INTEGER DEFAULT '0' NOT NULL,
c CHAR(120) DEFAULT '' NOT NULL,
pad CHAR(60) DEFAULT '' NOT NULL,
]] .. index_name .. [[ (id)
) ]]
else
print("Unknown database driver: " .. db_driver)
return 1
end
db_query(query)
db_query("CREATE INDEX k_" .. i .. " on sbtest" .. i .. "(k)")
print("Inserting " .. oltp_table_size .. " records into 'sbtest" .. i .. "'")
if (oltp_auto_inc) then
db_bulk_insert_init("INSERT INTO sbtest" .. i .. "(k, c, pad) VALUES")
else
db_bulk_insert_init("INSERT INTO sbtest" .. i .. "(id, k, c, pad) VALUES")
end
local c_val
local pad_val
for j = 1,oltp_table_size do
c_val = sb_rand_str([[
###########-###########-###########-###########-###########-###########-###########-###########-###########-###########]])
pad_val = sb_rand_str([[
###########-###########-###########-###########-###########]])
if (oltp_auto_inc) then
db_bulk_insert_next("(" .. sb_rand(1, oltp_table_size) .. ", '".. c_val .."', '" .. pad_val .. "')")
else
db_bulk_insert_next("("..j.."," .. sb_rand(1, oltp_table_size) .. ",'".. c_val .."', '" .. pad_val .. "' )")
end
end
db_bulk_insert_done()
end
-- prepare阶段执行的操作
function prepare()
local query
local i
local j
set_vars()
db_connect()
for i = 1,oltp_tables_count do
create_insert(i)
end
return 0
end
-- cleanup阶段执行的操作
function cleanup()
local i
set_vars()
for i = 1,oltp_tables_count do
print("Dropping table 'sbtest" .. i .. "'...")
db_query("DROP TABLE sbtest".. i )
end
end
-- 初始化默认值
function set_vars()
oltp_table_size = oltp_table_size or 10000
oltp_range_size = oltp_range_size or 100
oltp_tables_count = oltp_tables_count or 1
oltp_point_selects = oltp_point_selects or 10
oltp_simple_ranges = oltp_simple_ranges or 1
oltp_sum_ranges = oltp_sum_ranges or 1
oltp_order_ranges = oltp_order_ranges or 1
oltp_distinct_ranges = oltp_distinct_ranges or 1
oltp_index_updates = oltp_index_updates or 1
oltp_non_index_updates = oltp_non_index_updates or 1
if (oltp_auto_inc == 'off') then
oltp_auto_inc = false
else
oltp_auto_inc = true
end
if (oltp_read_only == 'on') then
oltp_read_only = true
else
oltp_read_only = false
end
if (oltp_skip_trx == 'on') then
oltp_skip_trx = true
else
oltp_skip_trx = false
end
end
这个脚本主要功能是用来准备测试的表、测试数据、初始化测试中需要的一些默认值、清楚数据。function prepare()会在全局command为perpare时调用,function cleanup()会在全局command为cleanup时调用,而function set_vars()会被引用至自己本身以及其他lua脚本中。
接下来我们来看oltp.lua脚本。
pathtest = string.match(test, "(.*/)") or ""
-- 引入common.lua脚本
dofile(pathtest .. "common.lua")
-- 申明在满足db_driver == "mysql" and mysql_table_engine == "myisam"条件时测试使用锁表开头,解除锁表结尾。其他全部使用BEGIN开始,commit结束(事务)
function thread_init(thread_id)
set_vars()
if (db_driver == "mysql" and mysql_table_engine == "myisam") then
begin_query = "LOCK TABLES sbtest WRITE"
commit_query = "UNLOCK TABLES"
else
begin_query = "BEGIN"
commit_query = "COMMIT"
end
end
-- 开始测试
function event(thread_id)
local rs
local i
local table_name
local range_start
local c_val
local pad_val
local query
-- 随机获取表名后缀
table_name = "sbtest".. sb_rand_uniform(1, oltp_tables_count)
-- 如果指定跳过事务参数为ON 则不调用事务开始标示
if not oltp_skip_trx then
db_query(begin_query)
end
-- 开始执行执行查询语句
for i=1, oltp_point_selects do
rs = db_query("SELECT c FROM ".. table_name .." WHERE id=" .. sb_rand(1, oltp_table_size))
end
for i=1, oltp_simple_ranges do
range_start = sb_rand(1, oltp_table_size)
rs = db_query("SELECT c FROM ".. table_name .." WHERE id BETWEEN " .. range_start .. " AND " .. range_start .. "+" .. oltp_range_size - 1)
end
for i=1, oltp_sum_ranges do
range_start = sb_rand(1, oltp_table_size)
rs = db_query("SELECT SUM(K) FROM ".. table_name .." WHERE id BETWEEN " .. range_start .. " AND " .. range_start .. "+" .. oltp_range_size - 1)
end
for i=1, oltp_order_ranges do
range_start = sb_rand(1, oltp_table_size)
rs = db_query("SELECT c FROM ".. table_name .." WHERE id BETWEEN " .. range_start .. " AND " .. range_start .. "+" .. oltp_range_size - 1 .. " ORDER BY c")
end
for i=1, oltp_distinct_ranges do
range_start = sb_rand(1, oltp_table_size)
rs = db_query("SELECT DISTINCT c FROM ".. table_name .." WHERE id BETWEEN " .. range_start .. " AND " .. range_start .. "+" .. oltp_range_size - 1 .. " ORDER BY c")
end
-- 如果oltp_read_only=on 则跳过DML语句
if not oltp_read_only then
-- 开始执行DML语句
for i=1, oltp_index_updates do
rs = db_query("UPDATE " .. table_name .. " SET k=k+1 WHERE id=" .. sb_rand(1, oltp_table_size))
end
for i=1, oltp_non_index_updates do
c_val = sb_rand_str("###########-###########-###########-###########-###########-###########-###########-###########-###########-###########")
query = "UPDATE " .. table_name .. " SET c='" .. c_val .. "' WHERE id=" .. sb_rand(1, oltp_table_size)
rs = db_query(query)
if rs then
print(query)
end
end
i = sb_rand(1, oltp_table_size)
rs = db_query("DELETE FROM " .. table_name .. " WHERE id=" .. i)
c_val = sb_rand_str([[
###########-###########-###########-###########-###########-###########-###########-###########-###########-###########]])
pad_val = sb_rand_str([[
###########-###########-###########-###########-###########]])
rs = db_query("INSERT INTO " .. table_name .. " (id, k, c, pad) VALUES " .. string.format("(%d, %d, '%s', '%s')",i, sb_rand(1, oltp_table_size) , c_val, pad_val))
end -- oltp_read_only
-- 如果指定跳过事务参数为ON,测不执行commit
if not oltp_skip_trx then
db_query(commit_query)
end
end
这个脚本就是默认的oltp测试时使用的测试脚本。结合common.lua中初始化的参数,此脚本每个事务中执行了10次基于主键的简单查询,1次范围查询,一次求和计算,一次排序查询,一次去重加排序查询,一次小字段更新,一次长字段更新,一次插入。而且在这个脚本中根据oltp_skip_trx oltp_read_only 这两个参数的限制不同需要执行的语句块也不同。
那么了解了这两个脚本之后我们就可以根据业务来定制自己的lua脚本了。
场景:在一个业务中有几个简单的主键查询,一个转账扣款的事务,一个插入语句语句分别是:
select id from test1 where id=:vid;
select id from test2 where id=:vid;
select id from test3 where id=:vid;
start TRANSACTION
update test4 set k=k-1 where id=:vid;
update test5 set k=k+1 where id=:vid;
commit;
insert into test6 (k,xv) values (:vk,:vxv);
那么我们的脚本就可以这么定制:
pathtest = string.match(test, "(.*/)") or ""
dofile(pathtest .. "common.lua")
function thread_init(thread_id)
set_vars()
if (db_driver == "mysql" and mysql_table_engine == "myisam") then
begin_query = "LOCK TABLES sbtest WRITE"
commit_query = "UNLOCK TABLES"
else
begin_query = "BEGIN"
commit_query = "COMMIT"
end
end
function event(thread_id)
local vid1
local vid2
local vid3
local vid4
local vid5
local vk
local vxv
vid1 = sb_rand_uniform(1,10000)
vid2 = sb_rand_uniform(1,10000)
vid3 = sb_rand_uniform(1,10000)
vid4 = sb_rand_uniform(1,10000)
vid5 = sb_rand_uniform(1,10000)
vk = sb_rand_uniform(10,10000)
vxv = sb_rand_str([[###########-###########-###########-###########-###########]])
rs = db_query("SELECT pad FROM test1 WHERE id=" .. vid1)
rs = db_query("SELECT pad FROM test2 WHERE id=" .. vid2)
rs = db_query("SELECT pad FROM test3 WHERE id=" .. vid3)
db_query(begin_query)
rs = db_query("update test4 set k=k-1 where id=" .. vid4)
rs = db_query("update test5 set k=k+1 where id=" .. vid5)
db_query(commit_query)
rs = db_query("insert into test6 (k,xv) values " .. string.format("(%d , '%s')",vk,vxv));
end
我们另存为mytest.lua
然后我们就可以使用如下命令来进行测试了:
./sysbench --mysql-host=127.0.0.1 --mysql-port=3166 --mysql-user=root --mysql-password=123456 --test=tests/db/mytest.lua --num-threads=128 --report-interval=10 --rand-type=uniform --max-time=600 --max-requests=0 run
思考:
现在多机房热备的构架已经比较普片了,那么跨机房部署还有一个比较影响性能的因素就是网络吞吐量,sysbench中是否可以加入网络吞吐量的测试呢?