参考资料:
https://www.cnblogs.com/sweet6/p/10574574.html
Leader选举是保证分布式数据一致性的关键所在。当Zookeeper集群中的一台服务器出现以下两种情况之一时,需要进入Leader选举。
(1) 服务器初始化启动。(集群的每个节点都没有数据 → 以SID的大小为准)
(2) 服务器运行期间无法和Leader保持连接。(集群的每个节点都有数据 ,或者Leader 宕机→ 以ZXID 和 SID 的最大值为准)
若进行Leader选举,则至少需要2台机器,两台的高可用性会差一些,如果Leader 宕机,就剩下一台,自己没办法选举。这里选取3台机器组成的服务器集群为例。
在集群初始化阶段,当有一台服务器Server1启动时,其单独无法进行和完成Leader选举,当第二台服务器Server2启动时,此时两台机器可以相互通信,每台机器都试图找到Leader,于是进入Leader选举过程。选举过程如下
(1) 每个Server发出一个投票。由于是初始情况,Server1和Server2都会将自己作为Leader服务器来进行投票,每次投票会包含所推举的服务器的myid和ZXID,使用(myid, ZXID)来表示,此时Server1的投票为(1, 0),Server2的投票为(2, 0),然后各自将这个投票发给集群中其他机器。
(2) 接受来自各个服务器的投票。集群的每个服务器收到投票后,首先判断该投票的有效性,如检查是否是本轮投票、是否来自LOOKING状态的服务器。
(3) 处理投票。针对每一个投票,服务器都需要将别人的投票和自己的投票进行PK,PK规则如下:
· 优先检查ZXID。ZXID比较大的服务器优先作为Leader。(这个很重要:是数据最新原则,保证数据的完整性)
· 如果ZXID相同,那么就比较myid。myid较大的服务器作为Leader服务器。(集群的节点标识)
对于Server1而言,它的投票是(1, 0),接收Server2的投票为(2, 0),首先会比较两者的ZXID,均为0。再比较myid,此时Server2的myid最大,于是更新自己的投票为(2, 0),然后重新投票,对于Server2而言,其无须更新自己的投票,只是再次向集群中所有机器发出上一次投票信息即可。
(4) 统计投票。每次投票后,服务器都会统计投票信息,判断是否已经有过半机器接受到相同的投票信息,对于Server1、Server2而言,都统计出集群中已经有两台机器接受了(2, 0)的投票信息,此时便认为已经选出了Leader。
(5) 改变服务器状态。一旦确定了Leader,每个服务器就会更新自己的状态,如果是Follower,那么就变更为FOLLOWING,如果是Leader,就变更为LEADING。
在Zookeeper运行期间,Leader与非Leader服务器各司其职,即便当有非Leader服务器宕机或新加入,此时也不会影响Leader,但是一旦Leader服务器挂了,那么整个集群将暂停对外服务,进入新一轮Leader选举,其过程和启动时期的Leader选举过程基本一致。
假设正在运行的有Server1、Server2、Server3三台服务器,当前Leader是Server2,若某一时刻Leader挂了,此时便开始Leader选举。
选举过程如下:
(1) 变更状态。Leader挂后,余下的非Observer服务器都会讲自己的服务器状态变更为LOOKING,然后开始进入Leader选举过程。
(2) 每个Server会发出一个投票。在运行期间,每个服务器上的ZXID可能不同,此时假定Server1的ZXID为123,Server3的ZXID为122;在第一轮投票中,Server1和Server3都会投自己,产生投票(1, 123),(3, 122),然后各自将投票发送给集群中所有机器。
(3) 接收来自各个服务器的投票。与启动时过程相同。
(4) 处理投票。与启动时过程相同,此时,Server1将会成为Leader。
(5) 统计投票。与启动时过程相同。
(6) 改变服务器的状态。与启动时过程相同。
1. 服务器状态
服务器具有四种状态,分别是LOOKING、FOLLOWING、LEADING、OBSERVING。
LOOKING:寻找Leader状态。当服务器处于该状态时,它会认为当前集群中没有Leader,因此需要进入Leader选举状态。
FOLLOWING:跟随者状态。表明当前服务器角色是Follower。
LEADING:领导者状态。表明当前服务器角色是Leader。
OBSERVING:观察者状态。表明当前服务器角色是Observer。
4.为什么zookeeper集群是单数?
1、容错
由于在增删改操作中需要半数以上服务器通过,来分析以下情况。
2台服务器,至少2台正常运行才行(2的半数为1,半数以上最少为2),正常运行1台服务器都不允许挂掉
3台服务器,至少2台正常运行才行(3的半数为1.5,半数以上最少为2),正常运行可以允许1台服务器挂掉
4台服务器,至少3台正常运行才行(4的半数为2,半数以上最少为3),正常运行可以允许1台服务器挂掉
5台服务器,至少3台正常运行才行(5的半数为2.5,半数以上最少为3),正常运行可以允许2台服务器挂掉
6台服务器,至少3台正常运行才行(6的半数为3,半数以上最少为4),正常运行可以允许2台服务器挂掉
通过以上可以发现,3台服务器和4台服务器都最多允许1台服务器挂掉,5台服务器和6台服务器都最多允许2台服务器挂掉
但是明显4台服务器成本高于3台服务器成本,6台服务器成本高于5服务器成本。这是由于半数以上投票通过决定的。
一个zookeeper集群中,可以有多个follower、observer服务器,但是必需只能有一个leader服务器。
如果leader服务器挂掉了,剩下的服务器集群会通过半数以上投票选出一个新的leader服务器。
集群互不通讯情况:
一个集群3台服务器,全部运行正常,但是其中1台裂开了,和另外2台无法通讯。3台机器里面2台正常运行过半票可以选出一个leader。
一个集群4台服务器,全部运行正常,但是其中2台裂开了,和另外2台无法通讯。4台机器里面2台正常工作没有过半票以上达到3,无法选出leader正常运行。
一个集群5台服务器,全部运行正常,但是其中2台裂开了,和另外3台无法通讯。5台机器里面3台正常运行过半票可以选出一个leader。
一个集群6台服务器,全部运行正常,但是其中3台裂开了,和另外3台无法通讯。6台机器里面3台正常工作没有过半票以上达到4,无法选出leader正常运行。
通可以上分析可以看出,为什么zookeeper集群数量总是单出现,主要原因还是在于第2点,防脑裂,对于第1点,无非是正常控制,但是不影响集群正常运行。但是出现第2种裂的情况,zookeeper集群就无法正常运行了。