神经网络介绍:算法基础

神经网络结构如下图所示(不失一般性,这里仅考虑二分类和回归问题):

神经网络介绍:算法基础_第1张图片

 

 

 

 

 

 

 

 

 

假设训练数据共有$m$个,训练数据集可由矩阵$X=\begin{bmatrix}\begin{smallmatrix}\vdots&\vdots&\cdots&\vdots\\\vec{x}^{(1)}&\vec{x}^{(2)}&\cdots&\vec{x}^{(m)}\\\vdots&\vdots&\cdots&\vdots\end{smallmatrix}\end{bmatrix}$表示,X为p行m列的矩阵(p为特征数)。

假设从输入层到输出层依次记为第$0,1,2,...,L$层,每层的节点数记为$n_0,n_1,n_2,...,n_L$,可以看出$n_0=p$,$n_L=1$(这里仅考虑二分类和回归问题)

第$l$层($l=1,2,...,L$)的权重$W^{[l]}$为$n_l$行$n_{l-1}$列的矩阵,$b^{[l]}$为$n_l$行1列的矩阵

第$l$层($l=1,2,...,L$)使用激活函数前的值$Z^{[l]}$为$n_l$行$m$列的矩阵,使用激活函数后的值$A^{[l]}$为$n_l$行$m$列的矩阵

一、公式

1. Forward Propagation

线性部分:$Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}$(注:$A^{[0]}=X$)

非线性部分:$A^{[l]}=g(Z^{[l]})$($g$为激活函数)

  • 本文隐藏层的激活函数使用relu,可减轻梯度消失问题
  • 若为二分类问题,输出层的激活函数使用sigmoid;若为回归问题,输出层不使用激活函数,即$A^{[L]}=Z^{[L]}$

2. Loss Function

若为回归问题,损失函数可写为$\mathcal{J}=\frac{1}{2m}\sum\limits_{i = 1}^{m}(a^{[L] (i)}-y^{(i)})^2$,其中$a^{[L] (i)}$为第$i$个样本的预测值(即$A^{[L]}$的$i$列),$y^{(i)}$为第$i$个样本的真实值

若为二分类问题,损失函数可写为$\mathcal{J}=-\frac{1}{m} \sum\limits_{i = 1}^{m} [y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right)]$

3. Backward Propagation

记$dA^{[l]}=\frac{\partial \mathcal{J} }{\partial A^{[l]}}$,则可推出以下公式:

  •  (1) $dZ^{[l]}=\frac{\partial \mathcal{J} }{\partial Z^{[l]}}=dA^{[l]}* g'(Z^{[l]})$,其中$g'$表示激活函数的导数
  •  (2) $dW^{[l]} = \frac{\partial \mathcal{J} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T}$,其中$A^{[l-1] T}$表示$A^{[l-1]}$的转置
  •  (3) $db^{[l]} = \frac{\partial \mathcal{J} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)}$,其中$dZ^{[l](i)}$为矩阵$dZ^{[l]}$的第$i$列
  •  (4) $dA^{[l-1]} = \frac{\partial \mathcal{J} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]}$,其中$W^{[l] T}$表示$W^{[l]}$的转置

4. Update Parameters

$W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]}$,$b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]}$,$\alpha$为学习率

二、代码

1. Initialize Parameters

def initialize_parameters_deep(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network

    Returns:
    parameters -- python dictionary containing your parameters 'W1', 'b1', ..., 'WL', 'bL':
                    Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
    """    
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)   # number of layers in the network(including the input layer)
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])*0.01
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))    
    return parameters
View Code

2. Forward Propagation

def sigmoid(Z): return 1/(1+np.exp(-Z))
def relu(Z): return np.maximum(0,Z)
def linear_activation_forward(A_prev, W, b, activation):
    """
    Implement the forward propagation for the LINEAR->ACTIVATION layer

    Arguments:
    A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)
    activation -- the activation to be used in this layer, stored as a text string: 'sigmoid' or 'relu' or 'none'

    Returns:
    A -- the output of the activation function, also called the post-activation value
    cache -- a python dictionary containing 'linear_cache' and 'activation_cache';
             stored for computing the backward pass efficiently
    """
    Z = np.dot(W, A_prev)+b
    linear_cache = (A_prev, W, b)
    activation_cache = Z
    A = sigmoid(Z) if activation=="sigmoid" else relu(Z) if activation=="relu" else np.array(Z,copy=True)
    cache = (linear_cache, activation_cache)
    return A, cache
def L_model_forward(X, parameters, type):
    """
    Implement forward propagation

    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    parameters -- output of initialize_parameters_deep()
    type -- problem type, stored as a text string: 'binary classification' or 'regression'

    Returns:
    AL -- last post-activation value
    caches -- list of caches containing:
                every cache of linear_activation_forward() (there are L of them, indexed from 0 to L-1)
    """
    caches = []
    A = X
    L = len(parameters) // 2   # number of layers in the neural network(excluding the input layer)
    ### hidden layer
    for l in range(1, L):
        A_prev = A
        A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], 'relu')
        caches.append(cache)
    ### output layer
    if type=="regression":
        AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], 'none')
    else:
        AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], 'sigmoid')
    caches.append(cache)            
    return AL, caches
View Code

3. Loss Function

def compute_cost(AL, Y, type):
    """
    Arguments:
    AL -- last post-activation value, shape (1, number of examples)
    Y -- true vector, shape (1, number of examples)
    type -- problem type, stored as a text string: 'binary classification' or 'regression'

    Returns:
    cost -- cross-entropy loss for classification and mean squared error for regression
    """
    m = Y.shape[1] #number of examples
    if type=="regression":
        cost = np.sum(np.power(AL-Y,2))/(2*m)
    else:
        cost = -np.sum(Y*np.log(AL)+(1-Y)*np.log(1-AL))/m
    cost = np.squeeze(cost)  # To make sure cost's shape is what expected (e.g., this turns [[10]] into 10)
    return cost
View Code

4. Backward Propagation

def relu_backward(dA, cache):
    """
    Implement the backward propagation for a single RELU unit.

    Arguments:
    dA -- post-activation gradient, of any shape
    cache -- 'Z' where we store for computing backward propagation efficiently

    Returns:
    dZ -- Gradient of the cost with respect to Z
    """
    Z = cache
    dZ = np.array(dA, copy=True) # just converting dz to a correct object
    dZ[Z <= 0] = 0 # When z <= 0, you should set dz to 0 as well
    return dZ
def sigmoid_backward(dA, cache):
    """
    Implement the backward propagation for a single SIGMOID unit.

    Returns:
    dZ -- Gradient of the cost with respect to Z
    """    
    Z = cache
    s = 1/(1+np.exp(-Z))
    dZ = dA * s * (1-s)
    return dZ
def linear_backward(dZ, cache):
    """
    Implement the linear portion of backward propagation for a single layer (layer l)

    Arguments:
    dZ -- Gradient of the cost with respect to the linear output (of current layer l)
    cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer

    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    A_prev, W, b = cache
    m = A_prev.shape[1]
    dW = np.dot(dZ, A_prev.T)/m
    db = np.sum(dZ, axis=1, keepdims=True)/m
    dA_prev = np.dot(W.T, dZ)
    return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
    """
    Implement the backward propagation for the LINEAR->ACTIVATION layer.

    Arguments:
    dA -- post-activation gradient for current layer l
    cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
    activation -- the activation to be used in this layer, stored as a text string: 'sigmoid' or 'relu' or 'none'

    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    linear_cache, activation_cache = cache
    dZ = sigmoid_backward(dA, activation_cache) if activation=="sigmoid" else relu_backward(dA, activation_cache) if activation=="relu" else np.array(dA,copy=True)
    dA_prev, dW, db = linear_backward(dZ, linear_cache)
    return dA_prev, dW, db
def L_model_backward(AL, Y, caches, type):
    """
    Implement the backward propagation

    Arguments:
    AL -- output of the forward propagation (L_model_forward())
    Y -- true vector
    caches -- list of caches containing:
                every cache of linear_activation_forward() (there are L of them, indexed from 0 to L-1)
    type -- problem type, stored as a text string: 'binary classification' or 'regression'

    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ...
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ...
    """
    grads = {}
    L = len(caches) # the number of layers(excluding the input layer)
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    current_cache = caches[L-1]
    ### Initializing the backpropagation
    if type=='binary classification':
        dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
        grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, 'sigmoid')
    else:
        dAL = AL-Y
        grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, 'none')
    # Loop from l=L-2 to l=0
    for l in reversed(range(L-1)):
        # (l+1)th layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)]
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+1)], current_cache, 'relu')
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
    return grads
View Code

5. Update Parameters

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent

    Arguments:
    parameters -- python dictionary containing parameters
    grads -- python dictionary containing gradients, output of L_model_backward

    Returns:
    parameters -- python dictionary containing updated parameters
                  parameters["W" + str(l)] = ...
                  parameters["b" + str(l)] = ...
    """   
    L = len(parameters)//2 #number of layers in the neural network(excluding the input layer)
    ### Update rule for each parameter. Use a for loop.
    for l in range(L):
        parameters["W" + str(l+1)] = parameters["W" + str(l+1)]-learning_rate*grads["dW" + str(l+1)]
        parameters["b" + str(l+1)] = parameters["b" + str(l+1)]-learning_rate*grads["db" + str(l+1)]
    return parameters
View Code

6. Train Neural Network

import numpy as np
def train(X, Y, type, parameters, learning_rate):
    """
    Train a neural network

    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    Y -- true vector, of shape (1, number of examples)
    type -- problem type, stored as a text string: 'binary classification' or 'regression'
    parameters -- python dictionary containing parameters
    learning_rate -- learning rate of the gradient descent update rule

    Returns:
    parameters -- python dictionary containing updated parameters
                  parameters["W" + str(l)] = ...
                  parameters["b" + str(l)] = ...
    """
    ### gradient descent
    AL, caches = L_model_forward(X, parameters, type)   # Forward propagation
    grads = L_model_backward(AL, Y, caches, type)   # Backward propagation
    parameters = update_parameters(parameters, grads, learning_rate)   # Update parameters
    return parameters
View Code

7. Prediction

def predict(X, parameters, type):
    """
    Predict through neural network
    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    parameters -- output of initialize_parameters_deep()
    type -- problem type, stored as a text string: 'binary classification' or 'regression'
    Returns:
    AL -- last post-activation value(prediction)
    """
    A = X
    L = len(parameters) // 2   # number of layers in the neural network(excluding the input layer)
    ### hidden layer
    for l in range(1, L):
        A_prev = A
        A, _ = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], 'relu')
    ### output layer
    if type=="regression":
        AL, _ = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], 'none')
    else:
        AL, _ = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], 'sigmoid')           
    return AL
View Code

三、应用

使用的数据为共享单车骑行数据,通过建立神经网络来预测共享单车的使用量

import sys
import pandas as pd
import matplotlib.pyplot as plt
rides = pd.read_csv('Bike-Sharing-Dataset/hour.csv')
### Categorical variables
dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday']
for each in dummy_fields:
    dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False)
    rides = pd.concat([rides, dummies], axis=1)
fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr']
data = rides.drop(fields_to_drop, axis=1)
### Numerical variables
quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed']
scaled_features = {}  #Store scalings in a dictionary so we can convert back later
for each in quant_features:
    mean, std = data[each].mean(), data[each].std()
    scaled_features[each] = [mean, std]
    data.loc[:, each] = (data[each] - mean)/std
### Split data
test_data = data[-21*24:]  # Save test data for approximately the last 21 days
data = data[:-21*24]  # Now remove the test data from the data set
target_fields = ['cnt', 'casual', 'registered']
features, targets = data.drop(target_fields, axis=1), data[target_fields]
test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields]
train_features, train_targets = features[:-60*24], targets[:-60*24]
val_features, val_targets = features[-60*24:], targets[-60*24:]  # Hold out the last 60 days or so of the remaining data as a validation set
### Train
layers_dims = [train_features.shape[1], 12, 1]
learning_rate = 0.1
iterations = 2000
losses = {'train':[], 'validation':[]}
parameters = initialize_parameters_deep(layers_dims)   # Parameters initialization
for ii in range(iterations):
    ### Go through a random batch of 128 records from the training data set
    batch = np.random.choice(train_features.index, size=128)
    X, y = train_features.ix[batch].values.T, train_targets.ix[batch]['cnt'].values.reshape((1,-1))
    parameters = train(X, y, 'regression', parameters, learning_rate)
    ### Losses
    AL_train = predict(train_features.values.T, parameters, 'regression')
    AL_val = predict(val_features.values.T, parameters, 'regression')
    train_loss = compute_cost(AL_train, train_targets['cnt'].values.reshape((1,-1)), 'regression')
    val_loss = compute_cost(AL_val, val_targets['cnt'].values.reshape((1,-1)), 'regression')
    sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \
                     + "% ... Training loss: " + str(train_loss)[:5] \
                     + " ... Validation loss: " + str(val_loss)[:5])
    sys.stdout.flush()
    losses['train'].append(train_loss)
    losses['validation'].append(val_loss)
### Plot Losses(left picture below)
plt.plot(losses['train'], label='Training loss')
plt.plot(losses['validation'], label='Validation loss')
plt.legend()
_ = plt.ylim()
### Predict and Plot(right picture below)
fig, ax = plt.subplots(figsize=(8,4))
mean, std = scaled_features['cnt']
AL_test = predict(test_features.values.T, parameters, 'regression')
predictions = AL_test*std + mean
ax.plot(predictions[0], label='Prediction')
ax.plot((test_targets['cnt']*std + mean).values, label='Data')
ax.set_xlim(right=len(predictions))
ax.legend()
dates = pd.to_datetime(rides.ix[test_data.index]['dteday'])
dates = dates.apply(lambda d: d.strftime('%b %d'))
ax.set_xticks(np.arange(len(dates))[12::24])
_ = ax.set_xticklabels(dates[12::24], rotation=45)
View Code

神经网络介绍:算法基础_第2张图片

你可能感兴趣的:(神经网络介绍:算法基础)