ccpuid:CPUID信息模块。范例:显示所有的CPUID信息

作者:zyl910

  关于获取各种CPUID信息,我之前积累了不少代码,现在决定将它们封装在一个模块中,方便代码复用。
  其次,前面只是介绍了CPUID的一些常用功能,而Intel、AMD的手册中定义了大量的CPUID功能。所以我希望有一个程序能按照功能号顺序,依次显示所有的CPUID信息。这样就能很方便的与Intel、AMD的手册进行对照,有助于学习与理解。


一、模块设计

  最初方案是 想将所有功能全部放在一个“ccpuid.h”头文件中,这样用起来会比较方便。
  但是考虑到全局变量等问题,以及需要编写CCPUID类。所以最终决定按照常规做法,分解为头文件与实现文件。

  对于原先所写的宏定义、类型定义等声明性内容,可以直接放在头文件中。
  对于原先的simd_sse_names等常数数组,考虑到全局变量问题,觉得作为CCPUID类的静态成员会比较好(CCPUID::SseNames、CCPUID::AvxNames)。
  对于原先的函数,__cpuid/__cpuidex作为内联函数,放在头文件中;而其他函数作为普通函数,放在实现文件中。

  除了封装原来的代码之外,还决定增加这些功能——
1. 全部的CPUIDFIELD常数。根据Intel、AMD手册及网络上的一些资料,将目前所有的CPUIDFIELD常数均定义一遍,方便各种情况下的使用。
2. CPUID字段的描述信息。定义了CPUIDFIELDDESC结构体,然后还定义了CCPUID::CPUFDesc这个静态成员,它是CPUIDFIELDDESC结构体数组,记录了每条CPUIDFIELD常数的名称与描述文本。这样就可以通过查找表格得知CPUIDFIELD常数的描述信息。
3. 缓存的描述信息。这是为了方便使用CPUID指令的功能2是获取缓存信息。因为每一个字节代表不同的意义,所以可以使用一个256个项目的字符串指针数组来存储描述文本。(CCPUID::CacheDesc)
4. CCPUID类。拥有存储CPUID信息的能力,提供Vendor、mmx等方法,用于随时翻查CPUID信息。还设计一个cur静态方法,返回一个默认的CCPUID对象,简化代码编写。


二、测试程序

2.1 简单使用

  最基本的用法是,定义一个CCPUID变量,然后调用RefreshAll方法刷新信息——
 CCPUID ccid;
 ccid.RefreshAll();

  在大多数时候,为了简化代码,可以调用cur静态方法来获得默认的CCPUID对象——
 CCPUID& ccid = CCPUID::cur();

  获得了CCPUID对象之后,便可以调用它的成员函数来获取基本信息——

	printf("CCPUID.InfoCount:\t%d\n", ccid.InfoCount());
	printf("CCPUID.LFuncStd:\t%.8Xh\n", ccid.LFuncStd());
	printf("CCPUID.LFuncExt:\t%.8Xh\n", ccid.LFuncExt());
	printf("CCPUID.Vendor:\t%s\n", ccid.Vendor());
	//printf("CCPUID.Brand:\t%s\n", ccid.Brand());
	printf("CCPUID.BrandTrim:\t%s\n", ccid.BrandTrim());



  获取SIMD指令集类的信息也很方便——

	printf("CCPUID.MMX:\t%d\t// hw: %d\n", ccid.mmx(), ccid.hwmmx());
	printf("CCPUID.SSE:\t%d\t// hw: %d\n", ccid.sse(), ccid.hwsse());
	for(i=1; i=i)	printf("\t%s\n", CCPUID::SseNames[i]);
	}
	printf("SSE4A:\t%d\n", ccid.GetField(CPUF_SSE4A));
	printf("AES:\t%d\n", ccid.GetField(CPUF_AES));
	printf("PCLMULQDQ:\t%d\n", ccid.GetField(CPUF_PCLMULQDQ));
	printf("CCPUID.AVX:\t%d\t// hw: %d\n", ccid.avx(), ccid.hwavx());
	for(i=1; i=i)	printf("\t%s\n", CCPUID::AvxNames[i]);
	}
	printf("F16C:\t%d\n", ccid.GetField(CPUF_F16C));
	printf("FMA:\t%d\n", ccid.GetField(CPUF_FMA));
	printf("FMA4:\t%d\n", ccid.GetField(CPUF_FMA4));
	printf("XOP:\t%d\n", ccid.GetField(CPUF_XOP));



  上面与前面博文中的代码差不多,只不过将全局函数变为CCPUID对象的成员函数而已,例如 simd_sse_names变为CCPUID::SseNames、getcpuidfield变为了ccid.GetField。


2.2 显示所有的CPUID信息

  因为CCPUID类缓存了CPUID信息,而且还有CPUFDesc描述信息数组,所以编写显示所有的CPUID信息的程序十分容易。

  我把它分为两个函数——
prtCcpuid:是外循环,对每一条CPUID信息调用prtCcpuid_Item函数。
prtCcpuid_Item:是内循环,在CCPUID::CPUFDesc数组中找到功能号相同的CPUIDFIELD子集,然后逐一输出该字段的数值、名称、描述等信息。

  代码如下——

// 打印CPUID字段_某项.
void prtCcpuid_Item(INT32 fid, INT32 fidsub, const INT32 CPUInfo[4])
{
	static const char* RegName[4] = { "EAX", "EBX", "ECX", "EDX" };
	INT32 mask = CPUIDFIELD_MASK_FID | CPUIDFIELD_MASK_FIDSUB;
	INT32 cur =  CPUIDFIELD_MAKE(fid, fidsub, 0, 0, 1) & mask;
	int i;
	for(i=0; i1)
			{
				printf("\t%s[%2d:%2d]", RegName[reg], pos+bits-1, pos);
			}
			else
			{
				printf("\t%s[   %2d]", RegName[reg], pos);
			}
			printf("=%s:\t0x%X\t(%u)", v.szName, n, n);
			if (bShowDesc)
			{
				printf("\t// %s", v.szDesc);
			}
			printf("\n");

		}
	}
}

// 打印CPUID字段.
void prtCcpuid(const CCPUID& ccid)
{
	int i;
	for(i=0; i0)	// 最高位为0,且不是全0
				{
					for(int k=0; k<=3; ++k)
					{
						if (j>0 || k>0)	// EAX的低8位不是缓存信息
						{
							int by = n & 0x00FF;
							if (by>0)
							{
								printf("\t0x%.2X:\t%s\n", by, CCPUID::CacheDesc[by]);
							}
						}
						n >>= 8;
					}
				}
			}
		}
	}
}



  prtCcpuid函数中有两个技巧——
1. 处理规范子功能号。检查子功能号,如果是规范的子功能号,便故意设为0,根据子功能号0的字段来解析各个子功能号的信息。
2. 处理特殊功能号。对于功能0和功能80000004h,可以利用Vendor、Brand这两个成员函数。对于功能2(缓存信息),可以利用CCPUID::CacheDesc数组来解析。


三、全部代码

3.1 头文件的全部代码

  ccpuid.h——

#if     _MSC_VER > 1000
#pragma once
#endif

#ifndef __CCPUID_H_INCLUDED
#define __CCPUID_H_INCLUDED

#include 	// NULL等标准宏和类型.
#include 	// INT32、UINT32等规范类型名.

#if _MSC_VER >=1400	// VC2005才支持intrin.h
#include 	// 所有Intrinsics函数.
#else
#include 	// MMX, SSE, SSE2
#endif

#if defined __cplusplus
extern "C" {
#endif

// __cpuid,__cpuidex
#if defined(_WIN64)
// 64位下不支持内联汇编. 应使用__cpuid、__cpuidex等Intrinsics函数.
#else
#if _MSC_VER < 1600	// VS2010. 据说VC2008 SP1之后才支持__cpuidex
inline void __cpuidex(INT32 CPUInfo[4], INT32 InfoType, INT32 ECXValue)
{
	if (0==CPUInfo)	return;
	_asm{
		// load. 读取参数到寄存器.
		mov edi, CPUInfo;	// 准备用edi寻址CPUInfo
		mov eax, InfoType;
		mov ecx, ECXValue;
		// CPUID
		cpuid;
		// save. 将寄存器保存到CPUInfo
		mov	[edi], eax;
		mov	[edi+4], ebx;
		mov	[edi+8], ecx;
		mov	[edi+12], edx;
	}
}
#endif	// #if _MSC_VER < 1600	// VS2010. 据说VC2008 SP1之后才支持__cpuidex

#if _MSC_VER < 1400	// VC2005才支持__cpuid
inline void __cpuid(INT32 CPUInfo[4], INT32 InfoType)
{
	__cpuidex(CPUInfo, InfoType, 0);
}
#endif	// #if _MSC_VER < 1400	// VC2005才支持__cpuid

#endif	// #if defined(_WIN64)


// CPUIDFIELD
typedef INT32 CPUIDFIELD;

#define  CPUIDFIELD_MASK_POS	0x0000001F	// 位偏移. 0~31.
#define  CPUIDFIELD_MASK_LEN	0x000003E0	// 位长. 1~32
#define  CPUIDFIELD_MASK_REG	0x00000C00	// 寄存器. 0=EAX, 1=EBX, 2=ECX, 3=EDX.
#define  CPUIDFIELD_MASK_FIDSUB	0x000FF000	// 子功能号(低8位).
#define  CPUIDFIELD_MASK_FID	0xFFF00000	// 功能号(最高4位 和 低8位).

#define CPUIDFIELD_SHIFT_POS	0
#define CPUIDFIELD_SHIFT_LEN	5
#define CPUIDFIELD_SHIFT_REG	10
#define CPUIDFIELD_SHIFT_FIDSUB	12
#define CPUIDFIELD_SHIFT_FID	20

#define CPUIDFIELD_MAKE(fid,fidsub,reg,pos,len)	(((fid)&0xF0000000) \
	| ((fid)<>CPUIDFIELD_SHIFT_FID) )
#define CPUIDFIELD_FIDSUB(cpuidfield)	( ((cpuidfield) & CPUIDFIELD_MASK_FIDSUB)>>CPUIDFIELD_SHIFT_FIDSUB )
#define CPUIDFIELD_REG(cpuidfield)	( ((cpuidfield) & CPUIDFIELD_MASK_REG)>>CPUIDFIELD_SHIFT_REG )
#define CPUIDFIELD_POS(cpuidfield)	( ((cpuidfield) & CPUIDFIELD_MASK_POS)>>CPUIDFIELD_SHIFT_POS )
#define CPUIDFIELD_LEN(cpuidfield)	( (((cpuidfield) & CPUIDFIELD_MASK_LEN)>>CPUIDFIELD_SHIFT_LEN) + 1 )

typedef struct tagCPUIDFIELDDESC{
	CPUIDFIELD	cpuf;
	INT32	reserved;
	const char* szName;
	const char* szDesc;
}CPUIDFIELDDESC;

#define CPUF_LFuncStd	CPUIDFIELD_MAKE(0,0,0,0,32)
#define CPUF_Stepping	CPUIDFIELD_MAKE(1,0,0,0,4)
#define CPUF_BaseModel	CPUIDFIELD_MAKE(1,0,0,4,4)
#define CPUF_BaseFamily	CPUIDFIELD_MAKE(1,0,0,8,4)
#define CPUF_ProcessorType	CPUIDFIELD_MAKE(1,0,0,12,2)
#define CPUF_ExtModel	CPUIDFIELD_MAKE(1,0,0,16,4)
#define CPUF_ExtFamily	CPUIDFIELD_MAKE(1,0,0,20,8)
#define CPUF_BrandId8	CPUIDFIELD_MAKE(1,0,1,0,8)
#define CPUF_CLFlush	CPUIDFIELD_MAKE(1,0,1,8,8)
#define CPUF_MaxApicId	CPUIDFIELD_MAKE(1,0,1,16,8)
#define CPUF_ApicId	CPUIDFIELD_MAKE(1,0,1,24,8)
#define CPUF_SSE3	CPUIDFIELD_MAKE(1,0,2,0,1)
#define CPUF_PCLMULQDQ	CPUIDFIELD_MAKE(1,0,2,1,1)
#define CPUF_DTES64	CPUIDFIELD_MAKE(1,0,2,2,1)
#define CPUF_MONITOR	CPUIDFIELD_MAKE(1,0,2,3,1)
#define CPUF_DS_CPL	CPUIDFIELD_MAKE(1,0,2,4,1)
#define CPUF_VMX	CPUIDFIELD_MAKE(1,0,2,5,1)
#define CPUF_SMX	CPUIDFIELD_MAKE(1,0,2,6,1)
#define CPUF_EIST	CPUIDFIELD_MAKE(1,0,2,7,1)
#define CPUF_TM2	CPUIDFIELD_MAKE(1,0,2,8,1)
#define CPUF_SSSE3	CPUIDFIELD_MAKE(1,0,2,9,1)
#define CPUF_CNXT_ID	CPUIDFIELD_MAKE(1,0,2,10,1)
#define CPUF_FMA	CPUIDFIELD_MAKE(1,0,2,12,1)
#define CPUF_CMPXCHG16B	CPUIDFIELD_MAKE(1,0,2,13,1)
#define CPUF_xTPR	CPUIDFIELD_MAKE(1,0,2,14,1)
#define CPUF_PDCM	CPUIDFIELD_MAKE(1,0,2,15,1)
#define CPUF_PCID	CPUIDFIELD_MAKE(1,0,2,17,1)
#define CPUF_DCA	CPUIDFIELD_MAKE(1,0,2,18,1)
#define CPUF_SSE41	CPUIDFIELD_MAKE(1,0,2,19,1)
#define CPUF_SSE42	CPUIDFIELD_MAKE(1,0,2,20,1)
#define CPUF_x2APIC	CPUIDFIELD_MAKE(1,0,2,21,1)
#define CPUF_MOVBE	CPUIDFIELD_MAKE(1,0,2,22,1)
#define CPUF_POPCNT	CPUIDFIELD_MAKE(1,0,2,23,1)
#define CPUF_TSC_DEADLINE	CPUIDFIELD_MAKE(1,0,2,24,1)
#define CPUF_AES	CPUIDFIELD_MAKE(1,0,2,25,1)
#define CPUF_XSAVE	CPUIDFIELD_MAKE(1,0,2,26,1)
#define CPUF_OSXSAVE	CPUIDFIELD_MAKE(1,0,2,27,1)
#define CPUF_AVX	CPUIDFIELD_MAKE(1,0,2,28,1)
#define CPUF_F16C	CPUIDFIELD_MAKE(1,0,2,29,1)
#define CPUF_RDRAND	CPUIDFIELD_MAKE(1,0,2,30,1)
#define CPUF_FPU	CPUIDFIELD_MAKE(1,0,3,0,1)
#define CPUF_VME	CPUIDFIELD_MAKE(1,0,3,1,1)
#define CPUF_DE	CPUIDFIELD_MAKE(1,0,3,2,1)
#define CPUF_PSE	CPUIDFIELD_MAKE(1,0,3,3,1)
#define CPUF_TSC	CPUIDFIELD_MAKE(1,0,3,4,1)
#define CPUF_MSR	CPUIDFIELD_MAKE(1,0,3,5,1)
#define CPUF_PAE	CPUIDFIELD_MAKE(1,0,3,6,1)
#define CPUF_MCE	CPUIDFIELD_MAKE(1,0,3,7,1)
#define CPUF_CX8	CPUIDFIELD_MAKE(1,0,3,8,1)
#define CPUF_APIC	CPUIDFIELD_MAKE(1,0,3,9,1)
#define CPUF_SEP	CPUIDFIELD_MAKE(1,0,3,11,1)
#define CPUF_MTRR	CPUIDFIELD_MAKE(1,0,3,12,1)
#define CPUF_PGE	CPUIDFIELD_MAKE(1,0,3,13,1)
#define CPUF_MCA	CPUIDFIELD_MAKE(1,0,3,14,1)
#define CPUF_CMOV	CPUIDFIELD_MAKE(1,0,3,15,1)
#define CPUF_PAT	CPUIDFIELD_MAKE(1,0,3,16,1)
#define CPUF_PSE36	CPUIDFIELD_MAKE(1,0,3,17,1)
#define CPUF_PSN	CPUIDFIELD_MAKE(1,0,3,18,1)
#define CPUF_CLFSH	CPUIDFIELD_MAKE(1,0,3,19,1)
#define CPUF_DS	CPUIDFIELD_MAKE(1,0,3,21,1)
#define CPUF_ACPI	CPUIDFIELD_MAKE(1,0,3,22,1)
#define CPUF_MMX	CPUIDFIELD_MAKE(1,0,3,23,1)
#define CPUF_FXSR	CPUIDFIELD_MAKE(1,0,3,24,1)
#define CPUF_SSE	CPUIDFIELD_MAKE(1,0,3,25,1)
#define CPUF_SSE2	CPUIDFIELD_MAKE(1,0,3,26,1)
#define CPUF_SS	CPUIDFIELD_MAKE(1,0,3,27,1)
#define CPUF_HTT	CPUIDFIELD_MAKE(1,0,3,28,1)
#define CPUF_TM	CPUIDFIELD_MAKE(1,0,3,29,1)
#define CPUF_PBE	CPUIDFIELD_MAKE(1,0,3,31,1)
#define CPUF_Cache_Type	CPUIDFIELD_MAKE(4,0,0,0,5)
#define CPUF_Cache_Level	CPUIDFIELD_MAKE(4,0,0,5,3)
#define CPUF_CACHE_SI	CPUIDFIELD_MAKE(4,0,0,8,1)
#define CPUF_CACHE_FA	CPUIDFIELD_MAKE(4,0,0,9,1)
#define CPUF_MaxApicIdShare	CPUIDFIELD_MAKE(4,0,0,14,12)
#define CPUF_MaxApicIdCore	CPUIDFIELD_MAKE(4,0,0,26,6)
#define CPUF_Cache_LineSize	CPUIDFIELD_MAKE(4,0,1,0,12)
#define CPUF_Cache_Partitions	CPUIDFIELD_MAKE(4,0,1,12,10)
#define CPUF_Cache_Ways	CPUIDFIELD_MAKE(4,0,1,22,10)
#define CPUF_Cache_Sets	CPUIDFIELD_MAKE(4,0,2,0,32)
#define CPUF_CACHE_INVD	CPUIDFIELD_MAKE(4,0,3,0,1)
#define CPUF_CACHE_INCLUSIVENESS	CPUIDFIELD_MAKE(4,0,3,1,1)
#define CPUF_CACHE_COMPLEXINDEX	CPUIDFIELD_MAKE(4,0,3,2,1)
#define CPUF_MonLineSizeMin	CPUIDFIELD_MAKE(5,0,0,0,16)
#define CPUF_MonLineSizeMax	CPUIDFIELD_MAKE(5,0,1,0,16)
#define CPUF_EMX	CPUIDFIELD_MAKE(5,0,2,0,1)
#define CPUF_IBE	CPUIDFIELD_MAKE(5,0,2,1,1)
#define CPUF_MWAIT_Number_C0	CPUIDFIELD_MAKE(5,0,3,0,4)
#define CPUF_MWAIT_Number_C1	CPUIDFIELD_MAKE(5,0,3,4,4)
#define CPUF_MWAIT_Number_C2	CPUIDFIELD_MAKE(5,0,3,8,4)
#define CPUF_MWAIT_Number_C3	CPUIDFIELD_MAKE(5,0,3,12,4)
#define CPUF_MWAIT_Number_C4	CPUIDFIELD_MAKE(5,0,3,16,4)
#define CPUF_DTS	CPUIDFIELD_MAKE(6,0,0,0,1)
#define CPUF_TURBO_BOOST	CPUIDFIELD_MAKE(6,0,0,1,1)
#define CPUF_ARAT	CPUIDFIELD_MAKE(6,0,0,2,1)
#define CPUF_PLN	CPUIDFIELD_MAKE(6,0,0,4,1)
#define CPUF_ECMD	CPUIDFIELD_MAKE(6,0,0,5,1)
#define CPUF_PTM	CPUIDFIELD_MAKE(6,0,0,6,1)
#define CPUF_DTS_ITs	CPUIDFIELD_MAKE(6,0,1,0,4)
#define CPUF_PERF	CPUIDFIELD_MAKE(6,0,2,0,1)
#define CPUF_ACNT2	CPUIDFIELD_MAKE(6,0,2,1,1)
#define CPUF_ENERGY_PERF_BIAS	CPUIDFIELD_MAKE(6,0,2,3,1)
#define CPUF_Max07Subleaf	CPUIDFIELD_MAKE(7,0,0,0,32)
#define CPUF_FSGSBASE	CPUIDFIELD_MAKE(7,0,1,0,1)
#define CPUF_BMI1	CPUIDFIELD_MAKE(7,0,1,3,1)
#define CPUF_HLE	CPUIDFIELD_MAKE(7,0,1,4,1)
#define CPUF_AVX2	CPUIDFIELD_MAKE(7,0,1,5,1)
#define CPUF_SMEP	CPUIDFIELD_MAKE(7,0,1,7,1)
#define CPUF_BMI2	CPUIDFIELD_MAKE(7,0,1,8,1)
#define CPUF_ERMS	CPUIDFIELD_MAKE(7,0,1,9,1)
#define CPUF_INVPCID	CPUIDFIELD_MAKE(7,0,1,10,1)
#define CPUF_RTM	CPUIDFIELD_MAKE(7,0,1,11,1)
#define CPUF_PLATFORM_DCA_CAP	CPUIDFIELD_MAKE(9,0,0,0,32)
#define CPUF_APM_Version	CPUIDFIELD_MAKE(0xA,0,0,0,8)
#define CPUF_APM_Counters	CPUIDFIELD_MAKE(0xA,0,0,8,8)
#define CPUF_APM_Bits	CPUIDFIELD_MAKE(0xA,0,0,16,8)
#define CPUF_APM_Length	CPUIDFIELD_MAKE(0xA,0,0,24,8)
#define CPUF_APM_CC	CPUIDFIELD_MAKE(0xA,0,1,0,1)
#define CPUF_APM_IR	CPUIDFIELD_MAKE(0xA,0,1,1,1)
#define CPUF_APM_RC	CPUIDFIELD_MAKE(0xA,0,1,2,1)
#define CPUF_APM_LLCR	CPUIDFIELD_MAKE(0xA,0,1,3,1)
#define CPUF_APM_LLCM	CPUIDFIELD_MAKE(0xA,0,1,4,1)
#define CPUF_APM_BIR	CPUIDFIELD_MAKE(0xA,0,1,5,1)
#define CPUF_APM_BMR	CPUIDFIELD_MAKE(0xA,0,1,6,1)
#define CPUF_APM_FC_Number	CPUIDFIELD_MAKE(0xA,0,3,0,5)
#define CPUF_APM_FC_Bits	CPUIDFIELD_MAKE(0xA,0,3,5,8)
#define CPUF_Topology_Bits	CPUIDFIELD_MAKE(0xB,0,0,0,5)
#define CPUF_Topology_Number	CPUIDFIELD_MAKE(0xB,0,1,0,16)
#define CPUF_Topology_Level	CPUIDFIELD_MAKE(0xB,0,2,0,8)
#define CPUF_Topology_Type	CPUIDFIELD_MAKE(0xB,0,2,8,8)
#define CPUF_X2APICID	CPUIDFIELD_MAKE(0xB,0,3,0,32)
#define CPUF_XFeatureSupportedMaskLo	CPUIDFIELD_MAKE(0xD,0,0,0,32)
#define CPUF_XFeatureEnabledSizeMax	CPUIDFIELD_MAKE(0xD,0,1,0,32)
#define CPUF_XFeatureSupportedSizeMax	CPUIDFIELD_MAKE(0xD,0,2,0,32)
#define CPUF_XFeatureSupportedMaskHi	CPUIDFIELD_MAKE(0xD,0,3,0,32)
#define CPUF_XSAVEOPT	CPUIDFIELD_MAKE(0xD,1,0,0,1)
#define CPUF_YmmSaveStateSize	CPUIDFIELD_MAKE(0xD,2,0,0,32)
#define CPUF_YmmSaveStateOffset	CPUIDFIELD_MAKE(0xD,2,1,0,32)
#define CPUF_LwpSaveStateSize	CPUIDFIELD_MAKE(0xD,62,0,0,32)
#define CPUF_LwpSaveStateOffset	CPUIDFIELD_MAKE(0xD,62,1,0,32)
#define CPUF_LFuncExt	CPUIDFIELD_MAKE(0x80000000,0,0,0,32)
#define CPUF_BrandId16	CPUIDFIELD_MAKE(0x80000001,0,1,0,16)
#define CPUF_PkgType	CPUIDFIELD_MAKE(0x80000001,0,1,28,4)
#define CPUF_LahfSahf	CPUIDFIELD_MAKE(0x80000001,0,2,0,1)
#define CPUF_CmpLegacy	CPUIDFIELD_MAKE(0x80000001,0,2,1,1)
#define CPUF_SVM	CPUIDFIELD_MAKE(0x80000001,0,2,2,1)
#define CPUF_ExtApicSpace	CPUIDFIELD_MAKE(0x80000001,0,2,3,1)
#define CPUF_AltMovCr8	CPUIDFIELD_MAKE(0x80000001,0,2,4,1)
#define CPUF_ABM	CPUIDFIELD_MAKE(0x80000001,0,2,5,1)
#define CPUF_SSE4A	CPUIDFIELD_MAKE(0x80000001,0,2,6,1)
#define CPUF_MisAlignSse	CPUIDFIELD_MAKE(0x80000001,0,2,7,1)
#define CPUF_3DNowPrefetch	CPUIDFIELD_MAKE(0x80000001,0,2,8,1)
#define CPUF_OSVW	CPUIDFIELD_MAKE(0x80000001,0,2,9,1)
#define CPUF_IBS	CPUIDFIELD_MAKE(0x80000001,0,2,10,1)
#define CPUF_XOP	CPUIDFIELD_MAKE(0x80000001,0,2,11,1)
#define CPUF_SKINIT	CPUIDFIELD_MAKE(0x80000001,0,2,12,1)
#define CPUF_WDT	CPUIDFIELD_MAKE(0x80000001,0,2,13,1)
#define CPUF_LWP	CPUIDFIELD_MAKE(0x80000001,0,2,15,1)
#define CPUF_FMA4	CPUIDFIELD_MAKE(0x80000001,0,2,16,1)
#define CPUF_BIT_NODEID	CPUIDFIELD_MAKE(0x80000001,0,2,19,1)
#define CPUF_TBM	CPUIDFIELD_MAKE(0x80000001,0,2,21,1)
#define CPUF_TopologyExtensions	CPUIDFIELD_MAKE(0x80000001,0,2,22,1)
#define CPUF_SYSCALL	CPUIDFIELD_MAKE(0x80000001,0,3,11,1)
#define CPUF_XD	CPUIDFIELD_MAKE(0x80000001,0,3,20,1)
#define CPUF_MmxExt	CPUIDFIELD_MAKE(0x80000001,0,3,22,1)
#define CPUF_FFXSR	CPUIDFIELD_MAKE(0x80000001,0,3,25,1)
#define CPUF_Page1GB	CPUIDFIELD_MAKE(0x80000001,0,3,26,1)
#define CPUF_RDTSCP	CPUIDFIELD_MAKE(0x80000001,0,3,27,1)
#define CPUF_LM	CPUIDFIELD_MAKE(0x80000001,0,3,29,1)
#define CPUF_3DNowExt	CPUIDFIELD_MAKE(0x80000001,0,3,30,1)
#define CPUF_3DNow	CPUIDFIELD_MAKE(0x80000001,0,3,31,1)
#define CPUF_L1ITlb2and4MSize	CPUIDFIELD_MAKE(0x80000005,0,0,0,8)
#define CPUF_L1ITlb2and4MAssoc	CPUIDFIELD_MAKE(0x80000005,0,0,8,8)
#define CPUF_L1DTlb2and4MSize	CPUIDFIELD_MAKE(0x80000005,0,0,16,8)
#define CPUF_L1DTlb2and4MAssoc	CPUIDFIELD_MAKE(0x80000005,0,0,24,8)
#define CPUF_L1ITlb4KSize	CPUIDFIELD_MAKE(0x80000005,0,1,0,8)
#define CPUF_L1ITlb4KAssoc	CPUIDFIELD_MAKE(0x80000005,0,1,8,8)
#define CPUF_L1DTlb4KSize	CPUIDFIELD_MAKE(0x80000005,0,1,16,8)
#define CPUF_L1DTlb4KAssoc	CPUIDFIELD_MAKE(0x80000005,0,1,24,8)
#define CPUF_L1DcLineSize	CPUIDFIELD_MAKE(0x80000005,0,2,0,8)
#define CPUF_L1DcLinesPerTag	CPUIDFIELD_MAKE(0x80000005,0,2,8,8)
#define CPUF_L1DcAssoc	CPUIDFIELD_MAKE(0x80000005,0,2,16,8)
#define CPUF_L1DcSize	CPUIDFIELD_MAKE(0x80000005,0,2,24,8)
#define CPUF_L1IcLineSize	CPUIDFIELD_MAKE(0x80000005,0,3,0,8)
#define CPUF_L1IcLinesPerTag	CPUIDFIELD_MAKE(0x80000005,0,3,8,8)
#define CPUF_L1IcAssoc	CPUIDFIELD_MAKE(0x80000005,0,3,16,8)
#define CPUF_L1IcSize	CPUIDFIELD_MAKE(0x80000005,0,3,24,8)
#define CPUF_L2ITlb2and4MSize	CPUIDFIELD_MAKE(0x80000006,0,0,0,12)
#define CPUF_L2ITlb2and4MAssoc	CPUIDFIELD_MAKE(0x80000006,0,0,12,4)
#define CPUF_L2DTlb2and4MSize	CPUIDFIELD_MAKE(0x80000006,0,0,16,12)
#define CPUF_L2DTlb2and4MAssoc	CPUIDFIELD_MAKE(0x80000006,0,0,28,4)
#define CPUF_L2ITlb4KSize	CPUIDFIELD_MAKE(0x80000006,0,1,0,12)
#define CPUF_L2ITlb4KAssoc	CPUIDFIELD_MAKE(0x80000006,0,1,12,4)
#define CPUF_L2DTlb4KSize	CPUIDFIELD_MAKE(0x80000006,0,1,16,12)
#define CPUF_L2DTlb4KAssoc	CPUIDFIELD_MAKE(0x80000006,0,1,28,4)
#define CPUF_L2LineSize	CPUIDFIELD_MAKE(0x80000006,0,2,0,8)
#define CPUF_L2LinesPerTag	CPUIDFIELD_MAKE(0x80000006,0,2,8,4)
#define CPUF_L2Assoc	CPUIDFIELD_MAKE(0x80000006,0,2,12,4)
#define CPUF_L2Size	CPUIDFIELD_MAKE(0x80000006,0,2,16,16)
#define CPUF_L3LineSize	CPUIDFIELD_MAKE(0x80000006,0,3,0,8)
#define CPUF_L3LinesPerTag	CPUIDFIELD_MAKE(0x80000006,0,3,8,4)
#define CPUF_L3Assoc	CPUIDFIELD_MAKE(0x80000006,0,3,12,4)
#define CPUF_L3Size	CPUIDFIELD_MAKE(0x80000006,0,3,18,14)
#define CPUF_TS	CPUIDFIELD_MAKE(0x80000007,0,3,0,1)
#define CPUF_FID	CPUIDFIELD_MAKE(0x80000007,0,3,1,1)
#define CPUF_VID	CPUIDFIELD_MAKE(0x80000007,0,3,2,1)
#define CPUF_TTP	CPUIDFIELD_MAKE(0x80000007,0,3,3,1)
#define CPUF_HTC	CPUIDFIELD_MAKE(0x80000007,0,3,4,1)
#define CPUF_100MHzSteps	CPUIDFIELD_MAKE(0x80000007,0,3,6,1)
#define CPUF_HwPstate	CPUIDFIELD_MAKE(0x80000007,0,3,7,1)
#define CPUF_TscInvariant	CPUIDFIELD_MAKE(0x80000007,0,3,8,1)
#define CPUF_CPB	CPUIDFIELD_MAKE(0x80000007,0,3,9,1)
#define CPUF_EffFreqRO	CPUIDFIELD_MAKE(0x80000007,0,3,10,1)
#define CPUF_PhysAddrSize	CPUIDFIELD_MAKE(0x80000008,0,0,0,8)
#define CPUF_LinAddrSize	CPUIDFIELD_MAKE(0x80000008,0,0,8,8)
#define CPUF_GuestPhysAddrSize	CPUIDFIELD_MAKE(0x80000008,0,0,16,8)
#define CPUF_NC	CPUIDFIELD_MAKE(0x80000008,0,2,0,8)
#define CPUF_ApicIdCoreIdSize	CPUIDFIELD_MAKE(0x80000008,0,2,12,4)
#define CPUF_SvmRev	CPUIDFIELD_MAKE(0x8000000A,0,0,0,8)
#define CPUF_NASID	CPUIDFIELD_MAKE(0x8000000A,0,1,0,32)
#define CPUF_NP	CPUIDFIELD_MAKE(0x8000000A,0,3,0,1)
#define CPUF_LbrVirt	CPUIDFIELD_MAKE(0x8000000A,0,3,1,1)
#define CPUF_SVML	CPUIDFIELD_MAKE(0x8000000A,0,3,2,1)
#define CPUF_NRIPS	CPUIDFIELD_MAKE(0x8000000A,0,3,3,1)
#define CPUF_TscRateMsr	CPUIDFIELD_MAKE(0x8000000A,0,3,4,1)
#define CPUF_VmcbClean	CPUIDFIELD_MAKE(0x8000000A,0,3,5,1)
#define CPUF_FlushByAsid	CPUIDFIELD_MAKE(0x8000000A,0,3,6,1)
#define CPUF_DecodeAssists	CPUIDFIELD_MAKE(0x8000000A,0,3,7,1)
#define CPUF_PauseFilter	CPUIDFIELD_MAKE(0x8000000A,0,3,10,1)
#define CPUF_PauseFilterThreshold	CPUIDFIELD_MAKE(0x8000000A,0,3,12,1)
#define CPUF_L1ITlb1GSize	CPUIDFIELD_MAKE(0x80000019,0,0,0,12)
#define CPUF_L1ITlb1GAssoc	CPUIDFIELD_MAKE(0x80000019,0,0,12,4)
#define CPUF_L1DTlb1GSize	CPUIDFIELD_MAKE(0x80000019,0,0,16,12)
#define CPUF_L1DTlb1GAssoc	CPUIDFIELD_MAKE(0x80000019,0,0,28,4)
#define CPUF_L2ITlb1GSize	CPUIDFIELD_MAKE(0x80000019,0,1,0,12)
#define CPUF_L2ITlb1GAssoc	CPUIDFIELD_MAKE(0x80000019,0,1,12,4)
#define CPUF_L2DTlb1GSize	CPUIDFIELD_MAKE(0x80000019,0,1,16,12)
#define CPUF_L2DTlb1GAssoc	CPUIDFIELD_MAKE(0x80000019,0,1,28,4)
#define CPUF_FP128	CPUIDFIELD_MAKE(0x8000001A,0,0,0,1)
#define CPUF_MOVU	CPUIDFIELD_MAKE(0x8000001A,0,0,1,1)
#define CPUF_IBSFFV	CPUIDFIELD_MAKE(0x8000001B,0,0,0,1)
#define CPUF_FetchSam	CPUIDFIELD_MAKE(0x8000001B,0,0,1,1)
#define CPUF_OpSam	CPUIDFIELD_MAKE(0x8000001B,0,0,2,1)
#define CPUF_RdWrOpCnt	CPUIDFIELD_MAKE(0x8000001B,0,0,3,1)
#define CPUF_OpCnt	CPUIDFIELD_MAKE(0x8000001B,0,0,4,1)
#define CPUF_BrnTrgt	CPUIDFIELD_MAKE(0x8000001B,0,0,5,1)
#define CPUF_OpCntExt	CPUIDFIELD_MAKE(0x8000001B,0,0,6,1)
#define CPUF_RipInvalidChk	CPUIDFIELD_MAKE(0x8000001B,0,0,7,1)
#define CPUF_LwpAvail	CPUIDFIELD_MAKE(0x8000001C,0,0,0,1)
#define CPUF_LwpVAL	CPUIDFIELD_MAKE(0x8000001C,0,0,1,1)
#define CPUF_LwpIRE	CPUIDFIELD_MAKE(0x8000001C,0,0,2,1)
#define CPUF_LwpBRE	CPUIDFIELD_MAKE(0x8000001C,0,0,3,1)
#define CPUF_LwpDME	CPUIDFIELD_MAKE(0x8000001C,0,0,4,1)
#define CPUF_LwpCNH	CPUIDFIELD_MAKE(0x8000001C,0,0,5,1)
#define CPUF_LwpRNH	CPUIDFIELD_MAKE(0x8000001C,0,0,6,1)
#define CPUF_LwpInt	CPUIDFIELD_MAKE(0x8000001C,0,0,31,1)
#define CPUF_LwpCbSize	CPUIDFIELD_MAKE(0x8000001C,0,1,0,8)
#define CPUF_LwpEventSize	CPUIDFIELD_MAKE(0x8000001C,0,1,8,8)
#define CPUF_LwpMaxEvents	CPUIDFIELD_MAKE(0x8000001C,0,1,16,8)
#define CPUF_LwpEventOffset	CPUIDFIELD_MAKE(0x8000001C,0,1,24,8)
#define CPUF_LwpLatencyMax	CPUIDFIELD_MAKE(0x8000001C,0,2,0,5)
#define CPUF_LwpDataAddress	CPUIDFIELD_MAKE(0x8000001C,0,2,5,1)
#define CPUF_LwpLatencyRnd	CPUIDFIELD_MAKE(0x8000001C,0,2,6,3)
#define CPUF_LwpVersion	CPUIDFIELD_MAKE(0x8000001C,0,2,9,7)
#define CPUF_LwpMinBufferSize	CPUIDFIELD_MAKE(0x8000001C,0,2,16,8)
#define CPUF_LwpBranchPrediction	CPUIDFIELD_MAKE(0x8000001C,0,2,28,1)
#define CPUF_LwpIpFiltering	CPUIDFIELD_MAKE(0x8000001C,0,2,29,1)
#define CPUF_LwpCacheLevels	CPUIDFIELD_MAKE(0x8000001C,0,2,30,1)
#define CPUF_LwpCacheLatency	CPUIDFIELD_MAKE(0x8000001C,0,2,31,1)
#define CPUF_D_LwpAvail	CPUIDFIELD_MAKE(0x8000001C,0,3,0,1)
#define CPUF_D_LwpVAL	CPUIDFIELD_MAKE(0x8000001C,0,3,1,1)
#define CPUF_D_LwpIRE	CPUIDFIELD_MAKE(0x8000001C,0,3,2,1)
#define CPUF_D_LwpBRE	CPUIDFIELD_MAKE(0x8000001C,0,3,3,1)
#define CPUF_D_LwpDME	CPUIDFIELD_MAKE(0x8000001C,0,3,4,1)
#define CPUF_D_LwpCNH	CPUIDFIELD_MAKE(0x8000001C,0,3,5,1)
#define CPUF_D_LwpRNH	CPUIDFIELD_MAKE(0x8000001C,0,3,6,1)
#define CPUF_D_LwpInt	CPUIDFIELD_MAKE(0x8000001C,0,3,31,1)
#define CPUF_CacheType	CPUIDFIELD_MAKE(0x8000001D,0,0,0,5)
#define CPUF_CacheLevel	CPUIDFIELD_MAKE(0x8000001D,0,0,5,3)
#define CPUF_SelfInitialization	CPUIDFIELD_MAKE(0x8000001D,0,0,8,1)
#define CPUF_FullyAssociative	CPUIDFIELD_MAKE(0x8000001D,0,0,9,1)
#define CPUF_NumSharingCache	CPUIDFIELD_MAKE(0x8000001D,0,0,14,12)
#define CPUF_CacheLineSize	CPUIDFIELD_MAKE(0x8000001D,0,1,0,12)
#define CPUF_CachePhysPartitions	CPUIDFIELD_MAKE(0x8000001D,0,1,12,10)
#define CPUF_CacheNumWays	CPUIDFIELD_MAKE(0x8000001D,0,1,22,10)
#define CPUF_CacheNumSets	CPUIDFIELD_MAKE(0x8000001D,0,2,0,32)
#define CPUF_WBINVD	CPUIDFIELD_MAKE(0x8000001D,0,3,0,1)
#define CPUF_CacheInclusive	CPUIDFIELD_MAKE(0x8000001D,0,3,1,1)
#define CPUF_ExtendedApicId	CPUIDFIELD_MAKE(0x8000001E,0,0,0,32)
#define CPUF_ComputeUnitId	CPUIDFIELD_MAKE(0x8000001E,0,1,0,8)
#define CPUF_CoresPerComputeUnit	CPUIDFIELD_MAKE(0x8000001E,0,1,8,2)
#define CPUF_NodeId	CPUIDFIELD_MAKE(0x8000001E,0,2,0,8)
#define CPUF_NodesPerProcessor	CPUIDFIELD_MAKE(0x8000001E,0,2,8,3)


// 取得位域
#ifndef __GETBITS32
#define __GETBITS32(src,pos,len)	( ((src)>>(pos)) & (((UINT32)-1)>>(32-len)) )
#endif

// 根据CPUIDFIELD从缓冲区中获取字段.
inline UINT32	getcpuidfield_buf(const INT32 dwBuf[4], CPUIDFIELD cpuf)
{
	return __GETBITS32(dwBuf[CPUIDFIELD_REG(cpuf)], CPUIDFIELD_POS(cpuf), CPUIDFIELD_LEN(cpuf));
}

// 根据CPUIDFIELD获取CPUID字段.
inline UINT32	getcpuidfield(CPUIDFIELD cpuf)
{
	INT32 dwBuf[4];
	__cpuidex(dwBuf, CPUIDFIELD_FID(cpuf), CPUIDFIELD_FIDSUB(cpuf));
	return getcpuidfield_buf(dwBuf, cpuf);
}



// SSE系列指令集的支持级别. simd_sse_level 函数的返回值.
#define SIMD_SSE_NONE	0	// 不支持.
#define SIMD_SSE_1	1	// SSE
#define SIMD_SSE_2	2	// SSE2
#define SIMD_SSE_3	3	// SSE3
#define SIMD_SSE_3S	4	// SSSE3
#define SIMD_SSE_41	5	// SSE4.1
#define SIMD_SSE_42	6	// SSE4.2


// AVX系列指令集的支持级别. simd_avx_level 函数的返回值。
#define SIMD_AVX_NONE	0	// 不支持
#define SIMD_AVX_1	1	// AVX
#define SIMD_AVX_2	2	// AVX2







// functions
int cpu_getvendor(char* pvendor);
int cpu_getbrand(char* pbrand);
int	simd_mmx(int* phwmmx);
int	simd_sse_level(int* phwsse);
int	simd_avx_level(int* phwavx);




typedef struct tagCPUIDINFO{
	INT32	fid;
	INT32	fidsub;
	union{
		INT32	dw[4];
		struct{
			INT32	_eax;
			INT32	_ebx;
			INT32	_ecx;
			INT32	_edx;
		};
	};
}CPUIDINFO;
typedef CPUIDINFO* LPCPUIDINFO;
typedef const CPUIDINFO* LPCCPUIDINFO;

#define MAX_CPUIDINFO	0x100	// CCPUID类中最多保存多少条CPUIDINFO信息。

#if defined __cplusplus
};
#endif

class CCPUID{
public:
	enum {
		CPUFDescLen = 292	// CPUIDFIELD描述信息数组的长度.
	};
	static const CPUIDFIELDDESC	CPUFDesc[CPUFDescLen];	// CPUIDFIELD描述信息数组.
	static const char*	CacheDesc[0x100];	// 缓存描述信息数组.
	static const char*	SseNames[7];	// SSE级别的名称.
	static const char*	AvxNames[3];	// AVX级别的名称.
	
	CPUIDINFO	Info[MAX_CPUIDINFO+1];	// CPUID信息数组.

	CCPUID();
	static CCPUID& cur() { if(0==_cur._InfoCount){ _cur.RefreshAll(); } return _cur; }	// 当前处理器的CCPUID.
	int InfoCount() const { return _InfoCount; }	// Info数组的有效项目数.
	void RefreshInfo();	// 刷新信息.
	void RefreshProperty();	// 刷新属性.
	void RefreshAll();	// 刷新所有.
	LPCCPUIDINFO GetInfo(INT32 InfoType, INT32 ECXValue=0) const;	// 取得信息.
	void GetData(INT32 CPUInfo[4], INT32 InfoType, INT32 ECXValue=0) const;	// 取得数据.
	UINT32 GetField(CPUIDFIELD cpuf) const;	// 取得CPUID字段
	// Property
	int LFuncStd() const { return _LFuncStd; }	// 最大的主功能号.
	int LFuncExt() const { return _LFuncExt; }	// 最大的扩展功能号.
	const char* Vendor() const { return _Vendor; }	// 厂商.
	const char* Brand() const { return _Brand; }	// 商标.
	const char* BrandTrim() const { return _BrandTrim; }	// 去掉首都空格后的商标.
	int mmx() const { return _mmx; }	// 系统支持MMX.
	int hwmmx() const { return _hwmmx; }	// 硬件支持MMX.
	int sse() const { return _sse; }	// 系统支持SSE.
	int hwsse() const { return _hwsse; }	// 硬件支持SSE.
	int avx() const { return _avx; }	// 系统支持AVX.
	int hwavx() const { return _hwavx; }	// 硬件支持AVX.

private:
	static CCPUID _cur;	// 当前处理器的CCPUID. 为了方便日常使用.

	int _InfoCount;	// Info数组的有效项目数.

	// Property
	int _LFuncStd;	// 最大的主功能号.
	int _LFuncExt;	// 最大的扩展功能号.
	char _Vendor[13];	// 厂商.
	char _Brand[49];	// 商标.
	const char* _BrandTrim;	// 去掉首都空格后的商标.
	int _mmx;	// 系统支持MMX.
	int _hwmmx;	// 硬件支持MMX.
	int _sse;	// 系统支持SSE.
	int _hwsse;	// 硬件支持SSE.
	int _avx;	// 系统支持AVX.
	int _hwavx;	// 硬件支持AVX.

	void RefreshInfo_Put(INT32 fid, INT32 fidsub, INT32 CPUInfo[4]);
	int	simd_mmx(int* phwmmx) const;
	int	simd_sse_level(int* phwsse) const;
	int	simd_avx_level(int* phwavx) const;

};


#endif	// #ifndef __CCPUID_H_INCLUDED


3.2 实现文件的全部代码

  ccpuid.cpp——

#include 
#include "ccpuid.h"

CCPUID CCPUID::_cur;

const CPUIDFIELDDESC CCPUID::CPUFDesc[] = {
	{CPUF_LFuncStd, 0, "LFuncStd", "largest standard function."}
	,{CPUF_Stepping, 0, "Stepping", "processor stepping."}
	,{CPUF_BaseModel, 0, "BaseModel", "base processor model."}
	,{CPUF_BaseFamily, 0, "BaseFamily", "base processor family."}
	,{CPUF_ProcessorType, 0, "ProcessorType", "processor type."}
	,{CPUF_ExtModel, 0, "ExtModel", "processor extended model."}
	,{CPUF_ExtFamily, 0, "ExtFamily", "processor extended family."}
	,{CPUF_BrandId8, 0, "BrandId8", "8-bit brand ID."}
	,{CPUF_CLFlush, 0, "CLFlush", "CLFLUSH line size. (*8)"}
	,{CPUF_MaxApicId, 0, "MaxApicId", "Maximum number of addressable IDs for logical processors in this physical package."}
	,{CPUF_ApicId, 0, "ApicId", "Initial local APIC physical ID(8-bit)."}
	,{CPUF_SSE3, 0, "SSE3", "Streaming SIMD Extensions 3."}
	,{CPUF_PCLMULQDQ, 0, "PCLMULQDQ", "PCLMULQDQ instruction."}
	,{CPUF_DTES64, 0, "DTES64", "64-bit DS Area."}
	,{CPUF_MONITOR, 0, "MONITOR", "MONITOR/MWAIT instructions."}
	,{CPUF_DS_CPL, 0, "DS_CPL", "CPL Qualified Debug Store."}
	,{CPUF_VMX, 0, "VMX", "Virtual Machine Extensions."}
	,{CPUF_SMX, 0, "SMX", "Safer Mode Extensions."}
	,{CPUF_EIST, 0, "EIST", "Enhanced Intel SpeedStep technology."}
	,{CPUF_TM2, 0, "TM2", "Thermal Monitor 2."}
	,{CPUF_SSSE3, 0, "SSSE3", "Supplemental Streaming SIMD Extensions 3 (SSSE3)."}
	,{CPUF_CNXT_ID, 0, "CNXT_ID", "L1 Context ID."}
	,{CPUF_FMA, 0, "FMA", "supports FMA extensions using YMM state."}
	,{CPUF_CMPXCHG16B, 0, "CMPXCHG16B", "CMPXCHG16B instruction."}
	,{CPUF_xTPR, 0, "xTPR", "xTPR Update Control. Can disable sending Task Priority messages."}
	,{CPUF_PDCM, 0, "PDCM", "Perfmon and Debug Capability."}
	,{CPUF_PCID, 0, "PCID", "Process Context Identifiers."}
	,{CPUF_DCA, 0, "DCA", "Direct Cache Access."}
	,{CPUF_SSE41, 0, "SSE41", "SSE4.1 instructions."}
	,{CPUF_SSE42, 0, "SSE42", "SSE4.2 instructions."}
	,{CPUF_x2APIC, 0, "x2APIC", "Extended xAPIC Support."}
	,{CPUF_MOVBE, 0, "MOVBE", "MOVBE Instruction."}
	,{CPUF_POPCNT, 0, "POPCNT", "POPCNT instruction."}
	,{CPUF_TSC_DEADLINE, 0, "TSC_DEADLINE", "Local APIC timer supports one-shot operation using a TSC deadline value."}
	,{CPUF_AES, 0, "AES", "Advanced Encryption Standard (AES) Instructions."}
	,{CPUF_XSAVE, 0, "XSAVE", "XSAVE (and related) instructions are supported by hardware."}
	,{CPUF_OSXSAVE, 0, "OSXSAVE", "XSAVE (and related) instructions are enabled."}
	,{CPUF_AVX, 0, "AVX", "AVX instructions."}
	,{CPUF_F16C, 0, "F16C", "half-precision convert instruction support."}
	,{CPUF_RDRAND, 0, "RDRAND", "RDRAND instruction."}
	,{CPUF_FPU, 0, "FPU", "Floating Point Unit On-Chip."}
	,{CPUF_VME, 0, "VME", "Virtual 8086 Mode Enhancements."}
	,{CPUF_DE, 0, "DE", "Debugging Extensions."}
	,{CPUF_PSE, 0, "PSE", "Page Size Extension."}
	,{CPUF_TSC, 0, "TSC", "Time Stamp Counter."}
	,{CPUF_MSR, 0, "MSR", "Model Specific Registers RDMSR and WRMSR Instructions."}
	,{CPUF_PAE, 0, "PAE", "Physical Address Extension."}
	,{CPUF_MCE, 0, "MCE", "Machine Check Exception."}
	,{CPUF_CX8, 0, "CX8", "CMPXCHG8B instruction."}
	,{CPUF_APIC, 0, "APIC", "APIC(Advanced Programmable Interrupt Controller) On-Chip."}
	,{CPUF_SEP, 0, "SEP", "Fast System Call instructions, SYSENTER and SYSEXIT."}
	,{CPUF_MTRR, 0, "MTRR", "Memory Type Range Registers."}
	,{CPUF_PGE, 0, "PGE", "Page Global Enable."}
	,{CPUF_MCA, 0, "MCA", "Machine-Check Architecture."}
	,{CPUF_CMOV, 0, "CMOV", "Conditional Move Instructions."}
	,{CPUF_PAT, 0, "PAT", "Page Attribute Table."}
	,{CPUF_PSE36, 0, "PSE36", "36-Bit Page Size Extension."}
	,{CPUF_PSN, 0, "PSN", "Processor Serial Number."}
	,{CPUF_CLFSH, 0, "CLFSH", "CLFLUSH Instruction."}
	,{CPUF_DS, 0, "DS", "Debug Store."}
	,{CPUF_ACPI, 0, "ACPI", "Thermal Monitor and Software Controlled Clock Facilities."}
	,{CPUF_MMX, 0, "MMX", "MMX instructions."}
	,{CPUF_FXSR, 0, "FXSR", "FXSAVE and FXRSTOR instructions."}
	,{CPUF_SSE, 0, "SSE", "Streaming SIMD Extensions."}
	,{CPUF_SSE2, 0, "SSE2", "Streaming SIMD Extensions 2."}
	,{CPUF_SS, 0, "SS", "Self Snoop."}
	,{CPUF_HTT, 0, "HTT", "Max APIC IDs reserved field is Valid."}
	,{CPUF_TM, 0, "TM", "Thermal Monitor."}
	,{CPUF_PBE, 0, "PBE", "Pending Break Enable."}
	,{CPUF_Cache_Type, 0, "Cache_Type", "Cache Type (0=Null, 1=Data, 2=Instruction, 3=Unified)."}
	,{CPUF_Cache_Level, 0, "Cache_Level", "Cache Level (Starts at 1)."}
	,{CPUF_CACHE_SI, 0, "CACHE_SI", "Self Initializing cache level."}
	,{CPUF_CACHE_FA, 0, "CACHE_FA", "Fully Associative cache."}
	,{CPUF_MaxApicIdShare, 0, "MaxApicIdShare", "Maximum number of addressable IDs for logical processors sharing this cache (plus 1 encoding)."}
	,{CPUF_MaxApicIdCore, 0, "MaxApicIdCore", "Maximum number of addressable IDs for processor cores in the physical package (plus 1 encoding)."}
	,{CPUF_Cache_LineSize, 0, "Cache_LineSize", "System Coherency Line Size (plus 1 encoding)."}
	,{CPUF_Cache_Partitions, 0, "Cache_Partitions", "Physical Line partitions (plus 1 encoding)."}
	,{CPUF_Cache_Ways, 0, "Cache_Ways", "Ways of Associativity (plus 1 encoding)."}
	,{CPUF_Cache_Sets, 0, "Cache_Sets", "Number of Sets (plus 1 encoding)."}
	,{CPUF_CACHE_INVD, 0, "CACHE_INVD", "WBINVD/INVD behavior on lower level caches."}
	,{CPUF_CACHE_INCLUSIVENESS, 0, "CACHE_INCLUSIVENESS", "Cache is inclusive of lower cache levels."}
	,{CPUF_CACHE_COMPLEXINDEX, 0, "CACHE_COMPLEXINDEX", "Complex Cache Indexing."}
	,{CPUF_MonLineSizeMin, 0, "MonLineSizeMin", "Smallest monitor line size in bytes."}
	,{CPUF_MonLineSizeMax, 0, "MonLineSizeMax", "Largest monitor-line size in bytes."}
	,{CPUF_EMX, 0, "EMX", "Enumerate MONITOR/MWAIT extensions."}
	,{CPUF_IBE, 0, "IBE", "Interrupt Break-Event."}
	,{CPUF_MWAIT_Number_C0, 0, "MWAIT_Number_C0", "Number of C0 sub C-states supported using MWAIT."}
	,{CPUF_MWAIT_Number_C1, 0, "MWAIT_Number_C1", "Number of C1 sub C-states supported using MWAIT."}
	,{CPUF_MWAIT_Number_C2, 0, "MWAIT_Number_C2", "Number of C2 sub C-states supported using MWAIT."}
	,{CPUF_MWAIT_Number_C3, 0, "MWAIT_Number_C3", "Number of C3 sub C-states supported using MWAIT."}
	,{CPUF_MWAIT_Number_C4, 0, "MWAIT_Number_C4", "Number of C4 sub C-states supported using MWAIT."}
	,{CPUF_DTS, 0, "DTS", "Digital Thermal Sensor."}
	,{CPUF_TURBO_BOOST, 0, "TURBO_BOOST", "Intel Turbo Boost Technology."}
	,{CPUF_ARAT, 0, "ARAT", "Always Running APIC Timer."}
	,{CPUF_PLN, 0, "PLN", "Power Limit Notification."}
	,{CPUF_ECMD, 0, "ECMD", "Extended Clock Modulation Duty."}
	,{CPUF_PTM, 0, "PTM", "Package Thermal Management."}
	,{CPUF_DTS_ITs, 0, "DTS_ITs", "Number of Interrupt Thresholds in Digital Thermal Sensor."}
	,{CPUF_PERF, 0, "PERF", "Hardware Coordination Feedback Capability."}
	,{CPUF_ACNT2, 0, "ACNT2", "ACNT2 Capability."}
	,{CPUF_ENERGY_PERF_BIAS, 0, "ENERGY_PERF_BIAS", "Performance-Energy Bias capability."}
	,{CPUF_Max07Subleaf, 0, "Max07Subleaf", "Reports the maximum supported leaf 7 sub-leaf."}
	,{CPUF_FSGSBASE, 0, "FSGSBASE", "Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE."}
	,{CPUF_BMI1, 0, "BMI1", "The first group of advanced bit manipulation extensions (ANDN, BEXTR, BLSI, BLSMK, BLSR, TZCNT)."}
	,{CPUF_HLE, 0, "HLE", "Hardware Lock Elision."}
	,{CPUF_AVX2, 0, "AVX2", "AVX2 instructions."}
	,{CPUF_SMEP, 0, "SMEP", "Supervisor Mode Execution Protection."}
	,{CPUF_BMI2, 0, "BMI2", "The second group of advanced bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX)."}
	,{CPUF_ERMS, 0, "ERMS", "Supports Enhanced REP MOVSB/STOSB."}
	,{CPUF_INVPCID, 0, "INVPCID", "INVPCID instruction."}
	,{CPUF_RTM, 0, "RTM", ""}
	,{CPUF_PLATFORM_DCA_CAP, 0, "PLATFORM_DCA_CAP", "Value of PLATFORM_DCA_CAP MSR Bits [31:0] (Offset 1F8h)."}
	,{CPUF_APM_Version, 0, "APM_Version", "Version ID of architectural performance monitoring."}
	,{CPUF_APM_Counters, 0, "APM_Counters", "Number of general-purpose performance monitoring counters per logical processor."}
	,{CPUF_APM_Bits, 0, "APM_Bits", "Bit width of general-purpose, performance monitoring counters."}
	,{CPUF_APM_Length, 0, "APM_Length", "Length of EBX bit vector to enumerate architectural performance monitoring events."}
	,{CPUF_APM_CC, 0, "APM_CC", "Core cycle event not available if 1."}
	,{CPUF_APM_IR, 0, "APM_IR", "Instruction retired event not available if 1."}
	,{CPUF_APM_RC, 0, "APM_RC", "Reference cycles event not available if 1."}
	,{CPUF_APM_LLCR, 0, "APM_LLCR", "Last-level cache reference event not available if 1."}
	,{CPUF_APM_LLCM, 0, "APM_LLCM", "Last-level cache misses event not available if 1."}
	,{CPUF_APM_BIR, 0, "APM_BIR", "Branch instruction retired event not available if 1."}
	,{CPUF_APM_BMR, 0, "APM_BMR", "Branch mispredict retired event not available if 1."}
	,{CPUF_APM_FC_Number, 0, "APM_FC_Number", "Number of fixed-function performance counters."}
	,{CPUF_APM_FC_Bits, 0, "APM_FC_Bits", "Bit width of fixed-function performance counters."}
	,{CPUF_Topology_Bits, 0, "Topology_Bits", "Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type."}
	,{CPUF_Topology_Number, 0, "Topology_Number", "Number of factory-configured logical processors at this level."}
	,{CPUF_Topology_Level, 0, "Topology_Level", "Level number. Same value in ECX input."}
	,{CPUF_Topology_Type, 0, "Topology_Type", "Level Type (0=Invalid, 1=Thread, 2=Core)."}
	,{CPUF_X2APICID, 0, "X2APICID", "x2APIC ID."}
	,{CPUF_XFeatureSupportedMaskLo, 0, "XFeatureSupportedMaskLo", "The lower 32 bits of XCR0(XFEATURE_ENABLED_MASK register)."}
	,{CPUF_XFeatureEnabledSizeMax, 0, "XFeatureEnabledSizeMax", "Size in bytes of XSAVE/XRSTOR area for the currently enabled features in XCR0."}
	,{CPUF_XFeatureSupportedSizeMax, 0, "XFeatureSupportedSizeMax", "Size in bytes of XSAVE/XRSTOR area for all features that the core supports."}
	,{CPUF_XFeatureSupportedMaskHi, 0, "XFeatureSupportedMaskHi", "The upper 32 bits of XCR0(XFEATURE_ENABLED_MASK register)."}
	,{CPUF_XSAVEOPT, 0, "XSAVEOPT", "XSAVEOPT is available."}
	,{CPUF_YmmSaveStateSize, 0, "YmmSaveStateSize", "YMM save state byte size."}
	,{CPUF_YmmSaveStateOffset, 0, "YmmSaveStateOffset", "YMM save state byte offset."}
	,{CPUF_LwpSaveStateSize, 0, "LwpSaveStateSize", "LWP save state byte size."}
	,{CPUF_LwpSaveStateOffset, 0, "LwpSaveStateOffset", "LWP save state byte offset."}
	,{CPUF_LFuncExt, 0, "LFuncExt", "Largest extended function."}
	,{CPUF_BrandId16, 0, "BrandId16", "16-bit Brand ID."}
	,{CPUF_PkgType, 0, "PkgType", "Package type (Family[7:0] >= 10h)."}
	,{CPUF_LahfSahf, 0, "LahfSahf", "LAHF and SAHF instruction support in 64-bit mode."}
	,{CPUF_CmpLegacy, 0, "CmpLegacy", "core multi-processing legacy mode."}
	,{CPUF_SVM, 0, "SVM", "secure virtual machine."}
	,{CPUF_ExtApicSpace, 0, "ExtApicSpace", "extended APIC space."}
	,{CPUF_AltMovCr8, 0, "AltMovCr8", "LOCK MOV CR0 means MOV CR8."}
	,{CPUF_ABM, 0, "ABM", "advanced bit manipulation (LZCNT)."}
	,{CPUF_SSE4A, 0, "SSE4A", "SSE4A instructions."}
	,{CPUF_MisAlignSse, 0, "MisAlignSse", "misaligned SSE mode."}
	,{CPUF_3DNowPrefetch, 0, "3DNowPrefetch", "PREFETCH and PREFETCHW instruction support."}
	,{CPUF_OSVW, 0, "OSVW", "OS visible workaround."}
	,{CPUF_IBS, 0, "IBS", "instruction based sampling."}
	,{CPUF_XOP, 0, "XOP", "extended operation support."}
	,{CPUF_SKINIT, 0, "SKINIT", "SKINIT and STGI are supported, independent of the value of MSRC000_0080[SVME]."}
	,{CPUF_WDT, 0, "WDT", "watchdog timer support."}
	,{CPUF_LWP, 0, "LWP", "lightweight profiling support."}
	,{CPUF_FMA4, 0, "FMA4", "4-operand FMA instruction support."}
	,{CPUF_BIT_NODEID, 0, "BIT_NODEID", "Indicates support for MSRC001_100C[NodeId, NodesPerProcessor]."}
	,{CPUF_TBM, 0, "TBM", "Trailing bit manipulation instruction support."}
	,{CPUF_TopologyExtensions, 0, "TopologyExtensions", "Topology extensions support."}
	,{CPUF_SYSCALL, 0, "SYSCALL", "SYSCALL and SYSRET instructions."}
	,{CPUF_XD, 0, "XD", "Execution Disable Bit."}
	,{CPUF_MmxExt, 0, "MmxExt", "AMD extensions to MMX instructions."}
	,{CPUF_FFXSR, 0, "FFXSR", "FXSAVE and FXRSTOR instruction optimizations."}
	,{CPUF_Page1GB, 0, "Page1GB", "1-GB large page support."}
	,{CPUF_RDTSCP, 0, "RDTSCP", "RDTSCP and TSC_AUX."}
	,{CPUF_LM, 0, "LM", "64-bit long mode.(x86-64)"}
	,{CPUF_3DNowExt, 0, "3DNowExt", "AMD extensions to 3DNow! instructions."}
	,{CPUF_3DNow, 0, "3DNow", "3DNow! instructions."}
	,{CPUF_L1ITlb2and4MSize, 0, "L1ITlb2and4MSize", "Instruction TLB number of entries for 2-MB and 4-MB pages."}
	,{CPUF_L1ITlb2and4MAssoc, 0, "L1ITlb2and4MAssoc", "Instruction TLB associativity for 2-MB and 4-MB pages."}
	,{CPUF_L1DTlb2and4MSize, 0, "L1DTlb2and4MSize", "Data TLB number of entries for 2-MB and 4-MB pages."}
	,{CPUF_L1DTlb2and4MAssoc, 0, "L1DTlb2and4MAssoc", "Data TLB associativity for 2-MB and 4-MB pages."}
	,{CPUF_L1ITlb4KSize, 0, "L1ITlb4KSize", "Instruction TLB number of entries for 4 KB pages."}
	,{CPUF_L1ITlb4KAssoc, 0, "L1ITlb4KAssoc", "Instruction TLB associativity for 4KB pages."}
	,{CPUF_L1DTlb4KSize, 0, "L1DTlb4KSize", "Data TLB number of entries for 4 KB pages."}
	,{CPUF_L1DTlb4KAssoc, 0, "L1DTlb4KAssoc", "Data TLB associativity for 4 KB pages."}
	,{CPUF_L1DcLineSize, 0, "L1DcLineSize", "L1 data cache line size in bytes."}
	,{CPUF_L1DcLinesPerTag, 0, "L1DcLinesPerTag", "L1 data cache lines per tag."}
	,{CPUF_L1DcAssoc, 0, "L1DcAssoc", "L1 data cache associativity."}
	,{CPUF_L1DcSize, 0, "L1DcSize", "L1 data cache size in KB."}
	,{CPUF_L1IcLineSize, 0, "L1IcLineSize", "L1 instruction cache line size in bytes"}
	,{CPUF_L1IcLinesPerTag, 0, "L1IcLinesPerTag", "L1 instruction cache lines per tag."}
	,{CPUF_L1IcAssoc, 0, "L1IcAssoc", "L1 instruction cache associativity."}
	,{CPUF_L1IcSize, 0, "L1IcSize", "L1 instruction cache size KB."}
	,{CPUF_L2ITlb2and4MSize, 0, "L2ITlb2and4MSize", "L2 instruction TLB number of entries for 2 MB and 4 MB pages."}
	,{CPUF_L2ITlb2and4MAssoc, 0, "L2ITlb2and4MAssoc", "L2 instruction TLB associativity for 2 MB and 4 MB pages."}
	,{CPUF_L2DTlb2and4MSize, 0, "L2DTlb2and4MSize", "L2 data TLB number of entries for 2 MB and 4 MB pages."}
	,{CPUF_L2DTlb2and4MAssoc, 0, "L2DTlb2and4MAssoc", "L2 data TLB associativity for 2 MB and 4 MB pages."}
	,{CPUF_L2ITlb4KSize, 0, "L2ITlb4KSize", "L2 instruction TLB number of entries for 4 KB pages."}
	,{CPUF_L2ITlb4KAssoc, 0, "L2ITlb4KAssoc", "L2 instruction TLB associativity for 4 KB pages."}
	,{CPUF_L2DTlb4KSize, 0, "L2DTlb4KSize", "L2 data TLB number of entries for 4 KB pages."}
	,{CPUF_L2DTlb4KAssoc, 0, "L2DTlb4KAssoc", "L2 data TLB associativity for 4 KB pages."}
	,{CPUF_L2LineSize, 0, "L2LineSize", "L2 cache line size in bytes."}
	,{CPUF_L2LinesPerTag, 0, "L2LinesPerTag", "L2 cache lines per tag."}
	,{CPUF_L2Assoc, 0, "L2Assoc", "L2 cache associativity."}
	,{CPUF_L2Size, 0, "L2Size", "L2 cache size in KB."}
	,{CPUF_L3LineSize, 0, "L3LineSize", "L3 cache line size in bytes."}
	,{CPUF_L3LinesPerTag, 0, "L3LinesPerTag", "L3 cache lines per tag."}
	,{CPUF_L3Assoc, 0, "L3Assoc", "L3 cache associativity."}
	,{CPUF_L3Size, 0, "L3Size", "L3 cache size."}
	,{CPUF_TS, 0, "TS", "Temperature sensor."}
	,{CPUF_FID, 0, "FID", "Frequency ID control."}
	,{CPUF_VID, 0, "VID", "Voltage ID control."}
	,{CPUF_TTP, 0, "TTP", "THERMTRIP."}
	,{CPUF_HTC, 0, "HTC", "TM: Hardware thermal control (HTC)."}
	,{CPUF_100MHzSteps, 0, "100MHzSteps", "100 MHz multiplier Control."}
	,{CPUF_HwPstate, 0, "HwPstate", "Hardware P-state control."}
	,{CPUF_TscInvariant, 0, "TscInvariant", "TSC invariant."}
	,{CPUF_CPB, 0, "CPB", "Core performance boost."}
	,{CPUF_EffFreqRO, 0, "EffFreqRO", "Read-only effective frequency interface."}
	,{CPUF_PhysAddrSize, 0, "PhysAddrSize", "Maximum physical byte address size in bits."}
	,{CPUF_LinAddrSize, 0, "LinAddrSize", "Maximum linear byte address size in bits."}
	,{CPUF_GuestPhysAddrSize, 0, "GuestPhysAddrSize", "Maximum guest physical byte address size in bits."}
	,{CPUF_NC, 0, "NC", "number of physical cores - 1."}
	,{CPUF_ApicIdCoreIdSize, 0, "ApicIdCoreIdSize", "APIC ID size. The number of bits in the initial APIC20[ApicId] value that indicate core ID within a processor."}
	,{CPUF_SvmRev, 0, "SvmRev", "SVM revision."}
	,{CPUF_NASID, 0, "NASID", "number of address space identifiers (ASID)."}
	,{CPUF_NP, 0, "NP", "Nested paging."}
	,{CPUF_LbrVirt, 0, "LbrVirt", "LBR virtualization."}
	,{CPUF_SVML, 0, "SVML", "SVM lock. Indicates support for SVM-Lock."}
	,{CPUF_NRIPS, 0, "NRIPS", "NRIP save. Indicates support for NRIP save on #VMEXIT."}
	,{CPUF_TscRateMsr, 0, "TscRateMsr", "MSR based TSC rate control."}
	,{CPUF_VmcbClean, 0, "VmcbClean", "VMCB clean bits. Indicates support for VMCB clean bits."}
	,{CPUF_FlushByAsid, 0, "FlushByAsid", "Flush by ASID."}
	,{CPUF_DecodeAssists, 0, "DecodeAssists", "Decode assists."}
	,{CPUF_PauseFilter, 0, "PauseFilter", "Pause intercept filter."}
	,{CPUF_PauseFilterThreshold, 0, "PauseFilterThreshold", "PAUSE filter threshold."}
	,{CPUF_L1ITlb1GSize, 0, "L1ITlb1GSize", "L1 instruction TLB number of entries for 1 GB pages."}
	,{CPUF_L1ITlb1GAssoc, 0, "L1ITlb1GAssoc", "L1 instruction TLB associativity for 1 GB pages."}
	,{CPUF_L1DTlb1GSize, 0, "L1DTlb1GSize", "L1 data TLB number of entries for 1 GB pages."}
	,{CPUF_L1DTlb1GAssoc, 0, "L1DTlb1GAssoc", "L1 data TLB associativity for 1 GB pages."}
	,{CPUF_L2ITlb1GSize, 0, "L2ITlb1GSize", "L2 instruction TLB number of entries for 1 GB pages."}
	,{CPUF_L2ITlb1GAssoc, 0, "L2ITlb1GAssoc", "L2 instruction TLB associativity for 1 GB pages."}
	,{CPUF_L2DTlb1GSize, 0, "L2DTlb1GSize", "L2 data TLB number of entries for 1 GB pages."}
	,{CPUF_L2DTlb1GAssoc, 0, "L2DTlb1GAssoc", "L2 data TLB associativity for 1 GB pages."}
	,{CPUF_FP128, 0, "FP128", "128-bit SSE (multimedia) instructions are executed with full-width internal operations and pipelines rather than decomposing them into internal 64-bit suboperations."}
	,{CPUF_MOVU, 0, "MOVU", "MOVU SSE (multimedia) instructions are more efficient and should be preferred to SSE(multimedia) MOVL/MOVH. MOVUPS is more efficient than MOVLPS/MOVHPS."}
	,{CPUF_IBSFFV, 0, "IBSFFV", "IBS feature flags valid."}
	,{CPUF_FetchSam, 0, "FetchSam", "IBS fetch sampling supported."}
	,{CPUF_OpSam, 0, "OpSam", "IBS execution sampling supported."}
	,{CPUF_RdWrOpCnt, 0, "RdWrOpCnt", "Read write of op counter supported."}
	,{CPUF_OpCnt, 0, "OpCnt", "Op counting mode supported."}
	,{CPUF_BrnTrgt, 0, "BrnTrgt", "Branch target address reporting supported."}
	,{CPUF_OpCntExt, 0, "OpCntExt", "IbsOpCurCnt and IbsOpMaxCnt extend by 7 bits."}
	,{CPUF_RipInvalidChk, 0, "RipInvalidChk", "Invalid RIP indication supported."}
	,{CPUF_LwpAvail, 0, "LwpAvail", "LWP available."}
	,{CPUF_LwpVAL, 0, "LwpVAL", "LWPVAL instruction available."}
	,{CPUF_LwpIRE, 0, "LwpIRE", "instructions retired event available."}
	,{CPUF_LwpBRE, 0, "LwpBRE", "branch retired event available."}
	,{CPUF_LwpDME, 0, "LwpDME", "DC miss event available."}
	,{CPUF_LwpCNH, 0, "LwpCNH", "core clocks not halted event available."}
	,{CPUF_LwpRNH, 0, "LwpRNH", "core reference clocks not halted event available."}
	,{CPUF_LwpInt, 0, "LwpInt", "interrupt on threshold overflow available."}
	,{CPUF_LwpCbSize, 0, "LwpCbSize", "control block size. Size in bytes of the LWPCB."}
	,{CPUF_LwpEventSize, 0, "LwpEventSize", "event record size. Size in bytes of an event record in the LWP event ring buffer."}
	,{CPUF_LwpMaxEvents, 0, "LwpMaxEvents", "maximum EventId. Maximum EventId value that is supported."}
	,{CPUF_LwpEventOffset, 0, "LwpEventOffset", "offset to the EventInterval1 field. Offset from the start of the LWPCB to the EventInterval1 field."}
	,{CPUF_LwpLatencyMax, 0, "LwpLatencyMax", "latency counter bit size. Size in bits of the cache latency counters."}
	,{CPUF_LwpDataAddress, 0, "LwpDataAddress", "data cache miss address valid."}
	,{CPUF_LwpLatencyRnd, 0, "LwpLatencyRnd", "amount cache latency is rounded."}
	,{CPUF_LwpVersion, 0, "LwpVersion", "version. Version of LWP implementation."}
	,{CPUF_LwpMinBufferSize, 0, "LwpMinBufferSize", "event ring buffer size. Minimum size of the LWP event ring buffer, in units of 32 event records."}
	,{CPUF_LwpBranchPrediction, 0, "LwpBranchPrediction", "branch prediction filtering supported."}
	,{CPUF_LwpIpFiltering, 0, "LwpIpFiltering", "IP filtering supported."}
	,{CPUF_LwpCacheLevels, 0, "LwpCacheLevels", "cache level filtering supported."}
	,{CPUF_LwpCacheLatency, 0, "LwpCacheLatency", "cache latency filtering supported."}
	,{CPUF_D_LwpAvail, 0, "D_LwpAvail", "lightweight profiling supported."}
	,{CPUF_D_LwpVAL, 0, "D_LwpVAL", "LWPVAL instruction supported."}
	,{CPUF_D_LwpIRE, 0, "D_LwpIRE", "instructions retired event supported."}
	,{CPUF_D_LwpBRE, 0, "D_LwpBRE", "branch retired event supported."}
	,{CPUF_D_LwpDME, 0, "D_LwpDME", "DC miss event supported."}
	,{CPUF_D_LwpCNH, 0, "D_LwpCNH", "core clocks not halted event supported."}
	,{CPUF_D_LwpRNH, 0, "D_LwpRNH", "core reference clocks not halted event supported."}
	,{CPUF_D_LwpInt, 0, "D_LwpInt", "interrupt on threshold overflow supported."}
	,{CPUF_CacheType, 0, "CacheType", "Cache Type (0=Null, 1=Data, 2=Instruction, 3=Unified)."}
	,{CPUF_CacheLevel, 0, "CacheLevel", "Cache Level (Starts at 1)."}
	,{CPUF_SelfInitialization, 0, "SelfInitialization", "Self Initializing cache level."}
	,{CPUF_FullyAssociative, 0, "FullyAssociative", "Fully Associative cache."}
	,{CPUF_NumSharingCache, 0, "NumSharingCache", "Number of cores sharing cache. The number of cores sharing this cache is NumSharingCache+1."}
	,{CPUF_CacheLineSize, 0, "CacheLineSize", "Cache line size in bytes (plus 1 encoding)."}
	,{CPUF_CachePhysPartitions, 0, "CachePhysPartitions", "Cache physical line partitions (plus 1 encoding)."}
	,{CPUF_CacheNumWays, 0, "CacheNumWays", "Cache number of ways (plus 1 encoding)."}
	,{CPUF_CacheNumSets, 0, "CacheNumSets", "Cache number of sets (plus 1 encoding)."}
	,{CPUF_WBINVD, 0, "WBINVD", "Write-Back Invalidate/Invalidate (WBINVD/INVD)."}
	,{CPUF_CacheInclusive, 0, "CacheInclusive", "Cache inclusive."}
	,{CPUF_ExtendedApicId, 0, "ExtendedApicId", "extended APIC ID."}
	,{CPUF_ComputeUnitId, 0, "ComputeUnitId", "compute unit ID. Identifies the processor compute unit ID."}
	,{CPUF_CoresPerComputeUnit, 0, "CoresPerComputeUnit", "cores per compute unit. The number of cores per compute unit is CoresPerComputeUnit+1."}
	,{CPUF_NodeId, 0, "NodeId", "Specifies the node ID."}
	,{CPUF_NodesPerProcessor, 0, "NodesPerProcessor", "Specifies the number of nodes per processor."}
	};

const char*	CCPUID::CacheDesc[] = {
	"Null descriptor, this byte contains no information"
	,"Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries"
	,"Instruction TLB: 4 MByte pages, fully associative, 2 entries"
	,"Data TLB: 4 KByte pages, 4-way set associative, 64 entries"
	,"Data TLB: 4 MByte pages, 4-way set associative, 8 entries"
	,"Data TLB1: 4 MByte pages, 4-way set associative, 32 entries"
	,"1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size"
	,""
	,"1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size"
	,"1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size"
	,"1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size"
	,"Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries"
	,"1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size"
	,"1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size"
	,"1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size"
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,"2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size"
	,"3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector"
	,"3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector"
	,""
	,"3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector"
	,""
	,""
	,""
	,"3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector"
	,""
	,""
	,"1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size"
	,""
	,""
	,""
	,"1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size"
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,"No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache"
	,"2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size"
	,"2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size"
	,"2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size"
	,"2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size"
	,"2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size"
	,"3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size"
	,"3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size"
	,"2nd-level cache: 3MByte, 12-way set associative, 64 byte line size"
	,"3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H); 2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size"
	,"3rd-level cache: 6MByte, 12-way set associative, 64 byte line size"
	,"3rd-level cache: 8MByte, 16-way set associative, 64 byte line size"
	,"3rd-level cache: 12MByte, 12-way set associative, 64 byte line size"
	,"3rd-level cache: 16MByte, 16-way set associative, 64 byte line size"
	,"2nd-level cache: 6MByte, 24-way set associative, 64 byte line size"
	,"Instruction TLB: 4 KByte pages, 32 entries"
	,"Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries"
	,"Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries"
	,"Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries"
	,""
	,""
	,"Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries"
	,"Data TLB0: 4 MByte pages, 4-way set associative, 16 entries"
	,"Data TLB0: 4 KByte pages, 4-way associative, 16 entries"
	,"Data TLB0: 4 KByte pages, fully associative, 16 entries"
	,"Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries"
	,"Data TLB: 4 KByte and 4 MByte pages, 64 entries"
	,"Data TLB: 4 KByte and 4 MByte pages,128 entries"
	,"Data TLB: 4 KByte and 4 MByte pages,256 entries"
	,""
	,""
	,""
	,"1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size"
	,""
	,""
	,""
	,""
	,""
	,"1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size"
	,"1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size"
	,"1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size"
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,"Trace cache: 12 K-μop, 8-way set associative"
	,"Trace cache: 16 K-μop, 8-way set associative"
	,"Trace cache: 32 K-μop, 8-way set associative"
	,""
	,""
	,""
	,"Instruction TLB: 2M/4M pages, fully associative, 8 entries"
	,""
	,"2nd-level cache: 1 MByte, 4-way set associative, 64byte line size"
	,"2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector"
	,"2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector"
	,"2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector"
	,"2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector"
	,"2nd-level cache: 2 MByte, 8-way set associative, 64byte line size"
	,""
	,"2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size"
	,"2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size"
	,""
	,"2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size"
	,"2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size"
	,"2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size"
	,"2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size"
	,"2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size"
	,"2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size"
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,"Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries"
	,"Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries"
	,"Instruction TLB: 4KByte pages, 4-way set associative, 64 entries"
	,"Data TLB: 4 KByte pages, 4-way set associative, 128 entries"
	,"Data TLB1: 4 KByte pages, 4-way associative, 256 entries"
	,""
	,""
	,""
	,""
	,""
	,"Data TLB1: 4 KByte pages, 4-way associative, 64 entries"
	,""
	,""
	,""
	,""
	,""
	,"Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries"
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,"Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries"
	,""
	,""
	,""
	,""
	,""
	,"3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size"
	,"3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size"
	,"3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size"
	,""
	,""
	,""
	,"3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size"
	,"3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size"
	,"3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size"
	,""
	,""
	,""
	,"3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size"
	,"3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size"
	,"3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size"
	,""
	,""
	,""
	,"3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size"
	,"3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size"
	,"3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size"
	,""
	,""
	,""
	,""
	,""
	,"3rd-level cache: 12MByte, 24-way set associative, 64 byte line size"
	,"3rd-level cache: 18MByte, 24-way set associative, 64 byte line size"
	,"3rd-level cache: 24MByte, 24-way set associative, 64 byte line size"
	,""
	,""
	,""
	,"64-Byte prefetching"
	,"128-Byte prefetching"
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,""
	,"CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters"
};

const char*	CCPUID::SseNames[] = {
	"None",
	"SSE",
	"SSE2",
	"SSE3",
	"SSSE3",
	"SSE4.1",
	"SSE4.2",
};

const char*	CCPUID::AvxNames[] = {
	"None",
	"AVX",
	"AVX2"
};

////////////////////////////////////////////////////////////
// functions
////////////////////////////////////////////////////////////

// 取得CPU厂商(Vendor).
//
// result: 成功时返回字符串的长度(一般为12)。失败时返回0.
// pvendor: 接收厂商信息的字符串缓冲区。至少为13字节.
int cpu_getvendor(char* pvendor)
{
	INT32 dwBuf[4];
	if (NULL==pvendor)	return 0;
	// Function 0: Vendor-ID and Largest Standard Function
	__cpuid(dwBuf, 0);
	// save. 保存到pvendor
	*(INT32*)&pvendor[0] = dwBuf[1];	// ebx: 前四个字符.
	*(INT32*)&pvendor[4] = dwBuf[3];	// edx: 中间四个字符.
	*(INT32*)&pvendor[8] = dwBuf[2];	// ecx: 最后四个字符.
	pvendor[12] = '\0';
	return 12;
}

// 取得CPU商标(Brand).
//
// result: 成功时返回字符串的长度(一般为48)。失败时返回0.
// pbrand: 接收商标信息的字符串缓冲区。至少为49字节.
int cpu_getbrand(char* pbrand)
{
	INT32 dwBuf[4];
	if (NULL==pbrand)	return 0;
	// Function 0x80000000: Largest Extended Function Number
	__cpuid(dwBuf, 0x80000000);
	if (dwBuf[0] < 0x80000004)	return 0;
	// Function 80000002h,80000003h,80000004h: Processor Brand String
	__cpuid((INT32*)&pbrand[0], 0x80000002);	// 前16个字符
	__cpuid((INT32*)&pbrand[16], 0x80000003);	// 中间16个字符
	__cpuid((INT32*)&pbrand[32], 0x80000004);	// 最后16个字符
	pbrand[48] = '\0';
	return 48;
}


// 是否支持MMX指令集.
//
// result: 返回操作系统是否支持MMX指令集. 非0表示支持, 0表示不支持.
// phwmmx: 返回硬件是否支持MMX指令集. 非0表示支持, 0表示不支持.
int	simd_mmx(int* phwmmx)
{
	const INT32	BIT_D_MMX = 0x00800000;	// bit 23
	int	rt = 0;	// result
	INT32 dwBuf[4];

	// check processor support
	__cpuid(dwBuf, 1);	// Function 1: Feature Information
	if ( dwBuf[3] & BIT_D_MMX )	rt=1;
	if (NULL!=phwmmx)	*phwmmx=rt;

	// check OS support
	if ( rt )
	{
#if defined(_WIN64)
		// VC编译器不支持64位下的MMX.
		rt=0;
#else
		__try 
		{
			_mm_empty();	// MMX instruction: emms
		}
		__except (EXCEPTION_EXECUTE_HANDLER)
		{
			rt=0;
		}
#endif	// #if defined(_WIN64)
	}

	return rt;
}

// 检测SSE系列指令集的支持级别.
//
// result: 返回操作系统的SSE系列指令集支持级别. 详见SIMD_SSE_常数.
// phwmmx: 返回硬件的SSE系列指令集支持级别. 详见SIMD_SSE_常数.
int	simd_sse_level(int* phwsse)
{
	const INT32	BIT_D_SSE = 0x02000000;	// bit 25
	const INT32	BIT_D_SSE2 = 0x04000000;	// bit 26
	const INT32	BIT_C_SSE3 = 0x00000001;	// bit 0
	const INT32	BIT_C_SSSE3 = 0x00000100;	// bit 9
	const INT32	BIT_C_SSE41 = 0x00080000;	// bit 19
	const INT32	BIT_C_SSE42 = 0x00100000;	// bit 20
	int	rt = SIMD_SSE_NONE;	// result
	INT32 dwBuf[4];

	// check processor support
	__cpuid(dwBuf, 1);	// Function 1: Feature Information
	if ( dwBuf[3] & BIT_D_SSE )
	{
		rt = SIMD_SSE_1;
		if ( dwBuf[3] & BIT_D_SSE2 )
		{
			rt = SIMD_SSE_2;
			if ( dwBuf[2] & BIT_C_SSE3 )
			{
				rt = SIMD_SSE_3;
				if ( dwBuf[2] & BIT_C_SSSE3 )
				{
					rt = SIMD_SSE_3S;
					if ( dwBuf[2] & BIT_C_SSE41 )
					{
						rt = SIMD_SSE_41;
						if ( dwBuf[2] & BIT_C_SSE42 )
						{
							rt = SIMD_SSE_42;
						}
					}
				}
			}
		}
	}
	if (NULL!=phwsse)	*phwsse=rt;

	// check OS support
	__try 
	{
		__m128 xmm1 = _mm_setzero_ps();	// SSE instruction: xorps
		if (0!=*(int*)&xmm1)	rt = SIMD_SSE_NONE;	// 避免Release模式编译优化时剔除上一条语句.
	}
	__except (EXCEPTION_EXECUTE_HANDLER)
	{
		rt = SIMD_SSE_NONE;
	}

	return rt;
}

// 检测AVX系列指令集的支持级别.
//
// result: 返回操作系统的AVX系列指令集支持级别. 详见SIMD_AVX_常数.
// phwavx: 返回硬件的AVX系列指令集支持级别. 详见SIMD_AVX_常数.
int	simd_avx_level(int* phwavx)
{
	int	rt = SIMD_AVX_NONE;	// result

	// check processor support
	if (0!=getcpuidfield(CPUF_AVX))
	{
		rt = SIMD_AVX_1;
		if (0!=getcpuidfield(CPUF_AVX2))
		{
			rt = SIMD_AVX_2;
		}
	}
	if (NULL!=phwavx)	*phwavx=rt;

	// check OS support
	if (0!=getcpuidfield(CPUF_OSXSAVE))	// XGETBV enabled for application use.
	{
		UINT32 n = getcpuidfield(CPUF_XFeatureSupportedMaskLo);	// XCR0: XFeatureSupportedMask register.
		if (6==(n&6))	// XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
		{
			return rt;
		}
	}
	return SIMD_AVX_NONE;
}


////////////////////////////////////////////////////////////
// CCPUID
////////////////////////////////////////////////////////////

// 构造函数.
CCPUID::CCPUID()
	:_InfoCount(0), _LFuncStd(0), _LFuncExt(0), _BrandTrim(0)
{
	_Vendor[0] = '\0';
	_Brand[0] = '\0';
}

// 刷新信息.在Info数组中追加一项.
void CCPUID::RefreshInfo_Put(INT32 fid, INT32 fidsub, INT32 CPUInfo[4])
{
	if (_InfoCount>=MAX_CPUIDINFO)	return;
	Info[_InfoCount].fid = fid;
	Info[_InfoCount].fidsub = fidsub;
	Info[_InfoCount].dw[0] = CPUInfo[0];
	Info[_InfoCount].dw[1] = CPUInfo[1];
	Info[_InfoCount].dw[2] = CPUInfo[2];
	Info[_InfoCount].dw[3] = CPUInfo[3];
	++_InfoCount;
}

// 刷新信息.
void CCPUID::RefreshInfo()
{
	INT32 CPUInfo[4];
	int nmax;
	int i,j;

	// == 将CPUID信息保存到Info数组 ==
	_InfoCount = 0;

	// 标准功能.
	__cpuid(CPUInfo, 0);
	RefreshInfo_Put(0, 0, CPUInfo);
	nmax = CPUInfo[0];	// CPUID(0).EAX[31:0]=LFuncStd
	_LFuncStd = nmax;
	for(i=1; i<=nmax; ++i)
	{
		__cpuidex(CPUInfo, i, 0);
		RefreshInfo_Put(i, 0, CPUInfo);
		// fidsub
		if (0x4==i)	// Deterministic Cache Parameters (Function 04h)
		{
			j=1;
			while(true)
			{
				__cpuidex(CPUInfo, i, j);
				if (0==(CPUInfo[0]&0x1F))	break;	// EAX[4:0]=Cache_Type
				RefreshInfo_Put(i, j, CPUInfo);
				// next
				++j;
			}
		}
		else if (0xB==i)	// x2APIC Features / Processor Topology (Function 0Bh)
		{
			j=1;
			while(true)
			{
				__cpuidex(CPUInfo, i, j);
				if (0==CPUInfo[0] && 0==CPUInfo[1])	break;	// until EAX=0 and EBX=0
				RefreshInfo_Put(i, j, CPUInfo);
				// next
				++j;
			}
		}
		else if (0xD==i)	// XSAVE Features (Function 0Dh)
		{
			// fidsub = 1
			j=1;
			__cpuidex(CPUInfo, i, j);
			RefreshInfo_Put(i, j, CPUInfo);
			// fidsub >= 2
			for(j=2; j<=63; ++j)
			{
				__cpuidex(CPUInfo, i, j);
				if (0!=CPUInfo[0]
					|| 0!=CPUInfo[1]
					|| 0!=CPUInfo[2]
					|| 0!=CPUInfo[3])
				{
					RefreshInfo_Put(i, j, CPUInfo);
				}
			}
		}
	}

	// 扩展功能.
	__cpuid(CPUInfo, 0x80000000);
	RefreshInfo_Put(0, 0, CPUInfo);
	nmax = CPUInfo[0];	// CPUID(0x80000000).EAX[31:0]=LFuncExt
	_LFuncExt = nmax;
	if (nmax!=0)
	{
		for(i=0x80000001; i<=nmax; ++i)
		{
			__cpuidex(CPUInfo, i, 0);
			RefreshInfo_Put(i, 0, CPUInfo);
			// fidsub
			if (0x8000001D==i)	// Cache Properties (Function 8000001Dh)
			{
				j=1;
				while(true)
				{
					__cpuidex(CPUInfo, i, j);
					if (0==(CPUInfo[0]&0x1F))	break;	// EAX[4:0]=Cache_Type
					RefreshInfo_Put(i, j, CPUInfo);
					// next
					++j;
				}
			}
		}
	}

}

// 刷新属性.
void CCPUID::RefreshProperty()
{
	INT32 dwBuf[4];

	// Vendor
	GetData(dwBuf, 0);	// Function 0: Vendor-ID and Largest Standard Function
	*(INT32*)&_Vendor[0] = dwBuf[1];	// ebx: 前四个字符.
	*(INT32*)&_Vendor[4] = dwBuf[3];	// edx: 中间四个字符.
	*(INT32*)&_Vendor[8] = dwBuf[2];	// ecx: 最后四个字符.
	_Vendor[12] = '\0';

	// Brand
	_Brand[0] = '\0';
	if (_LFuncExt >= 0x80000004)
	{
		// Function 80000002h,80000003h,80000004h: Processor Brand String
		GetData((INT32*)&_Brand[0], 0x80000002);	// 前16个字符.
		GetData((INT32*)&_Brand[16], 0x80000003);	// 中间16个字符.
		GetData((INT32*)&_Brand[32], 0x80000004);	// 最后16个字符.
		_Brand[48] = '\0';
	}
	_BrandTrim = &_Brand[0];
	while('\0'!=*_BrandTrim && ' '==*_BrandTrim) ++_BrandTrim;	// 去除首都空格.

	// SIMD
	_mmx = simd_mmx(&_hwmmx);
	_sse = simd_sse_level(&_hwsse);
	_avx = simd_avx_level(&_hwavx);

}

// 刷新所有.
void CCPUID::RefreshAll()
{
	RefreshInfo();
	RefreshProperty();
}

// 取得信息.
//
// return: 成功时返回LPCPUIDINFO. 如果失败, 便返回NULL.
// InfoType: 功能号. 即CPUID指令的eax参数.
// ECXValue: 子功能号. 即CPUID指令的ecx参数.
LPCCPUIDINFO CCPUID::GetInfo(INT32 InfoType, INT32 ECXValue) const
{
	// 顺序搜索.
	for(int i=0; idw[0];
	CPUInfo[1] = p->dw[1];
	CPUInfo[2] = p->dw[2];
	CPUInfo[3] = p->dw[3];
}

// 取得CPUID字段
UINT32 CCPUID::GetField(CPUIDFIELD cpuf) const
{
	LPCCPUIDINFO p = GetInfo(CPUIDFIELD_FID(cpuf), CPUIDFIELD_FIDSUB(cpuf));
	if (NULL==p)	return 0;
	return getcpuidfield_buf(p->dw, cpuf);
}

int	CCPUID::simd_mmx(int* phwmmx) const
{
	const INT32	BIT_D_MMX = 0x00800000;	// bit 23
	int	rt = 0;	// result
	INT32 dwBuf[4];

	// check processor support
	GetData(dwBuf, 1);	// Function 1: Feature Information
	if ( dwBuf[3] & BIT_D_MMX )	rt=1;
	if (NULL!=phwmmx)	*phwmmx=rt;

	// check OS support
	if ( rt )
	{
#if defined(_WIN64)
		// VC编译器不支持64位下的MMX.
		rt=0;
#else
		__try 
		{
			_mm_empty();	// MMX instruction: emms
		}
		__except (EXCEPTION_EXECUTE_HANDLER)
		{
			rt=0;
		}
#endif	// #if defined(_WIN64)
	}

	return rt;
}

int	CCPUID::simd_sse_level(int* phwsse) const
{
	const INT32	BIT_D_SSE = 0x02000000;	// bit 25
	const INT32	BIT_D_SSE2 = 0x04000000;	// bit 26
	const INT32	BIT_C_SSE3 = 0x00000001;	// bit 0
	const INT32	BIT_C_SSSE3 = 0x00000100;	// bit 9
	const INT32	BIT_C_SSE41 = 0x00080000;	// bit 19
	const INT32	BIT_C_SSE42 = 0x00100000;	// bit 20
	int	rt = SIMD_SSE_NONE;	// result
	INT32 dwBuf[4];

	// check processor support
	GetData(dwBuf, 1);	// Function 1: Feature Information
	if ( dwBuf[3] & BIT_D_SSE )
	{
		rt = SIMD_SSE_1;
		if ( dwBuf[3] & BIT_D_SSE2 )
		{
			rt = SIMD_SSE_2;
			if ( dwBuf[2] & BIT_C_SSE3 )
			{
				rt = SIMD_SSE_3;
				if ( dwBuf[2] & BIT_C_SSSE3 )
				{
					rt = SIMD_SSE_3S;
					if ( dwBuf[2] & BIT_C_SSE41 )
					{
						rt = SIMD_SSE_41;
						if ( dwBuf[2] & BIT_C_SSE42 )
						{
							rt = SIMD_SSE_42;
						}
					}
				}
			}
		}
	}
	if (NULL!=phwsse)	*phwsse=rt;

	// check OS support
	__try 
	{
		__m128 xmm1 = _mm_setzero_ps();	// SSE instruction: xorps
		if (0!=*(int*)&xmm1)	rt = SIMD_SSE_NONE;	// 避免Release模式编译优化时剔除上一条语句.
	}
	__except (EXCEPTION_EXECUTE_HANDLER)
	{
		rt = SIMD_SSE_NONE;
	}

	return rt;
}

int	CCPUID::simd_avx_level(int* phwavx) const
{
	int	rt = SIMD_AVX_NONE;	// result

	// check processor support
	if (0!=GetField(CPUF_AVX))
	{
		rt = SIMD_AVX_1;
		if (0!=GetField(CPUF_AVX2))
		{
			rt = SIMD_AVX_2;
		}
	}
	if (NULL!=phwavx)	*phwavx=rt;

	// check OS support
	if (0!=GetField(CPUF_OSXSAVE))	// XGETBV enabled for application use.
	{
		UINT32 n = GetField(CPUF_XFeatureSupportedMaskLo);	// XCR0: XFeatureSupportedMask register.
		if (6==(n&6))	// XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
		{
			return rt;
		}
	}
	return SIMD_AVX_NONE;
}


3.3 测试程序的全部代码

  testccpuid.cpp——

#include 
#include 
#include 
#include 

#include "ccpuid.h"

bool bShowDesc = true;	// 显示描述信息

// 打印CPUID字段_某项.
void prtCcpuid_Item(INT32 fid, INT32 fidsub, const INT32 CPUInfo[4])
{
	static const char* RegName[4] = { "EAX", "EBX", "ECX", "EDX" };
	INT32 mask = CPUIDFIELD_MASK_FID | CPUIDFIELD_MASK_FIDSUB;
	INT32 cur =  CPUIDFIELD_MAKE(fid, fidsub, 0, 0, 1) & mask;
	int i;
	for(i=0; i1)
			{
				printf("\t%s[%2d:%2d]", RegName[reg], pos+bits-1, pos);
			}
			else
			{
				printf("\t%s[   %2d]", RegName[reg], pos);
			}
			printf("=%s:\t0x%X\t(%u)", v.szName, n, n);
			if (bShowDesc)
			{
				printf("\t// %s", v.szDesc);
			}
			printf("\n");

		}
	}
}

// 打印CPUID字段.
void prtCcpuid(const CCPUID& ccid)
{
	int i;
	for(i=0; i0)	// 最高位为0,且不是全0
				{
					for(int k=0; k<=3; ++k)
					{
						if (j>0 || k>0)	// EAX的低8位不是缓存信息
						{
							int by = n & 0x00FF;
							if (by>0)
							{
								printf("\t0x%.2X:\t%s\n", by, CCPUID::CacheDesc[by]);
							}
						}
						n >>= 8;
					}
				}
			}
		}
	}
}

int _tmain(int argc, _TCHAR* argv[])
{
	int i;

	//CCPUID ccid;
	//ccid.RefreshAll();
	CCPUID& ccid = CCPUID::cur();

	// base info
	printf("CCPUID.InfoCount:\t%d\n", ccid.InfoCount());
	printf("CCPUID.LFuncStd:\t%.8Xh\n", ccid.LFuncStd());
	printf("CCPUID.LFuncExt:\t%.8Xh\n", ccid.LFuncExt());
	printf("CCPUID.Vendor:\t%s\n", ccid.Vendor());
	//printf("CCPUID.Brand:\t%s\n", ccid.Brand());
	printf("CCPUID.BrandTrim:\t%s\n", ccid.BrandTrim());

	// simd info
	printf("CCPUID.MMX:\t%d\t// hw: %d\n", ccid.mmx(), ccid.hwmmx());
	printf("CCPUID.SSE:\t%d\t// hw: %d\n", ccid.sse(), ccid.hwsse());
	for(i=1; i=i)	printf("\t%s\n", CCPUID::SseNames[i]);
	}
	printf("SSE4A:\t%d\n", ccid.GetField(CPUF_SSE4A));
	printf("AES:\t%d\n", ccid.GetField(CPUF_AES));
	printf("PCLMULQDQ:\t%d\n", ccid.GetField(CPUF_PCLMULQDQ));
	printf("CCPUID.AVX:\t%d\t// hw: %d\n", ccid.avx(), ccid.hwavx());
	for(i=1; i=i)	printf("\t%s\n", CCPUID::AvxNames[i]);
	}
	printf("F16C:\t%d\n", ccid.GetField(CPUF_F16C));
	printf("FMA:\t%d\n", ccid.GetField(CPUF_FMA));
	printf("FMA4:\t%d\n", ccid.GetField(CPUF_FMA4));
	printf("XOP:\t%d\n", ccid.GetField(CPUF_XOP));

	// field info
	printf("== fields ==\n");
	prtCcpuid(ccid);

	return 0;
}


 


四、测试结果

4.1 测试过程

  在以下编译器中成功编译——
VC6(32位)
VC2003(32位)
VC2005(32位)
VC2010(32位、64位)

  在64位的win7中运行“x64\Release\testccpuid2010.exe”,运行效果——

  利用cmdarg_ui运行“Debug\testccpuid.exe”,顺便测试WinXP与VC6——


4.2 Intel i3-2310M的检测结果

  检测结果——

CCPUID.InfoCount:	29
CCPUID.LFuncStd:	0000000Dh
CCPUID.LFuncExt:	80000008h
CCPUID.Vendor:	GenuineIntel
CCPUID.BrandTrim:	Intel(R) Core(TM) i3-2310M CPU @ 2.10GHz
CCPUID.MMX:	0	// hw: 1
CCPUID.SSE:	6	// hw: 6
	SSE
	SSE2
	SSE3
	SSSE3
	SSE4.1
	SSE4.2
SSE4A:	0
AES:	0
PCLMULQDQ:	1
CCPUID.AVX:	1	// hw: 1
	AVX
F16C:	0
FMA:	0
FMA4:	0
XOP:	0
== fields ==
0x00000000[0]:	0000000D	756E6547	6C65746E	49656E69
	EAX[31: 0]=LFuncStd:	0xD	(13)	// largest standard function.
	Vendor:	GenuineIntel
0x00000001[0]:	000206A7	02100800	1DBAE3BF	BFEBFBFF
	EAX[ 3: 0]=Stepping:	0x7	(7)	// processor stepping.
	EAX[ 7: 4]=BaseModel:	0xA	(10)	// base processor model.
	EAX[11: 8]=BaseFamily:	0x6	(6)	// base processor family.
	EAX[13:12]=ProcessorType:	0x0	(0)	// processor type.
	EAX[19:16]=ExtModel:	0x2	(2)	// processor extended model.
	EAX[27:20]=ExtFamily:	0x0	(0)	// processor extended family.
	EBX[ 7: 0]=BrandId8:	0x0	(0)	// 8-bit brand ID.
	EBX[15: 8]=CLFlush:	0x8	(8)	// CLFLUSH line size. (*8)
	EBX[23:16]=MaxApicId:	0x10	(16)	// Maximum number of addressable IDs for logical processors in this physical package.
	EBX[31:24]=ApicId:	0x2	(2)	// Initial local APIC physical ID(8-bit).
	ECX[    0]=SSE3:	0x1	(1)	// Streaming SIMD Extensions 3.
	ECX[    1]=PCLMULQDQ:	0x1	(1)	// PCLMULQDQ instruction.
	ECX[    2]=DTES64:	0x1	(1)	// 64-bit DS Area.
	ECX[    3]=MONITOR:	0x1	(1)	// MONITOR/MWAIT instructions.
	ECX[    4]=DS_CPL:	0x1	(1)	// CPL Qualified Debug Store.
	ECX[    5]=VMX:	0x1	(1)	// Virtual Machine Extensions.
	ECX[    6]=SMX:	0x0	(0)	// Safer Mode Extensions.
	ECX[    7]=EIST:	0x1	(1)	// Enhanced Intel SpeedStep technology.
	ECX[    8]=TM2:	0x1	(1)	// Thermal Monitor 2.
	ECX[    9]=SSSE3:	0x1	(1)	// Supplemental Streaming SIMD Extensions 3 (SSSE3).
	ECX[   10]=CNXT_ID:	0x0	(0)	// L1 Context ID.
	ECX[   12]=FMA:	0x0	(0)	// supports FMA extensions using YMM state.
	ECX[   13]=CMPXCHG16B:	0x1	(1)	// CMPXCHG16B instruction.
	ECX[   14]=xTPR:	0x1	(1)	// xTPR Update Control. Can disable sending Task Priority messages.
	ECX[   15]=PDCM:	0x1	(1)	// Perfmon and Debug Capability.
	ECX[   17]=PCID:	0x1	(1)	// Process Context Identifiers.
	ECX[   18]=DCA:	0x0	(0)	// Direct Cache Access.
	ECX[   19]=SSE41:	0x1	(1)	// SSE4.1 instructions.
	ECX[   20]=SSE42:	0x1	(1)	// SSE4.2 instructions.
	ECX[   21]=x2APIC:	0x1	(1)	// Extended xAPIC Support.
	ECX[   22]=MOVBE:	0x0	(0)	// MOVBE Instruction.
	ECX[   23]=POPCNT:	0x1	(1)	// POPCNT instruction.
	ECX[   24]=TSC_DEADLINE:	0x1	(1)	// Local APIC timer supports one-shot operation using a TSC deadline value.
	ECX[   25]=AES:	0x0	(0)	// Advanced Encryption Standard (AES) Instructions.
	ECX[   26]=XSAVE:	0x1	(1)	// XSAVE (and related) instructions are supported by hardware.
	ECX[   27]=OSXSAVE:	0x1	(1)	// XSAVE (and related) instructions are enabled.
	ECX[   28]=AVX:	0x1	(1)	// AVX instructions.
	ECX[   29]=F16C:	0x0	(0)	// half-precision convert instruction support.
	ECX[   30]=RDRAND:	0x0	(0)	// RDRAND instruction.
	EDX[    0]=FPU:	0x1	(1)	// Floating Point Unit On-Chip.
	EDX[    1]=VME:	0x1	(1)	// Virtual 8086 Mode Enhancements.
	EDX[    2]=DE:	0x1	(1)	// Debugging Extensions.
	EDX[    3]=PSE:	0x1	(1)	// Page Size Extension.
	EDX[    4]=TSC:	0x1	(1)	// Time Stamp Counter.
	EDX[    5]=MSR:	0x1	(1)	// Model Specific Registers RDMSR and WRMSR Instructions.
	EDX[    6]=PAE:	0x1	(1)	// Physical Address Extension.
	EDX[    7]=MCE:	0x1	(1)	// Machine Check Exception.
	EDX[    8]=CX8:	0x1	(1)	// CMPXCHG8B instruction.
	EDX[    9]=APIC:	0x1	(1)	// APIC(Advanced Programmable Interrupt Controller) On-Chip.
	EDX[   11]=SEP:	0x1	(1)	// Fast System Call instructions, SYSENTER and SYSEXIT.
	EDX[   12]=MTRR:	0x1	(1)	// Memory Type Range Registers.
	EDX[   13]=PGE:	0x1	(1)	// Page Global Enable.
	EDX[   14]=MCA:	0x1	(1)	// Machine-Check Architecture.
	EDX[   15]=CMOV:	0x1	(1)	// Conditional Move Instructions.
	EDX[   16]=PAT:	0x1	(1)	// Page Attribute Table.
	EDX[   17]=PSE36:	0x1	(1)	// 36-Bit Page Size Extension.
	EDX[   18]=PSN:	0x0	(0)	// Processor Serial Number.
	EDX[   19]=CLFSH:	0x1	(1)	// CLFLUSH Instruction.
	EDX[   21]=DS:	0x1	(1)	// Debug Store.
	EDX[   22]=ACPI:	0x1	(1)	// Thermal Monitor and Software Controlled Clock Facilities.
	EDX[   23]=MMX:	0x1	(1)	// MMX instructions.
	EDX[   24]=FXSR:	0x1	(1)	// FXSAVE and FXRSTOR instructions.
	EDX[   25]=SSE:	0x1	(1)	// Streaming SIMD Extensions.
	EDX[   26]=SSE2:	0x1	(1)	// Streaming SIMD Extensions 2.
	EDX[   27]=SS:	0x1	(1)	// Self Snoop.
	EDX[   28]=HTT:	0x1	(1)	// Max APIC IDs reserved field is Valid.
	EDX[   29]=TM:	0x1	(1)	// Thermal Monitor.
	EDX[   31]=PBE:	0x1	(1)	// Pending Break Enable.
0x00000002[0]:	76035A01	00F0B2FF	00000000	00CA0000
	0x5A:	Data TLB: 4 KByte and 4 MByte pages, 64 entries
	0x03:	Data TLB: 4 KByte pages, 4-way set associative, 64 entries
	0x76:	Instruction TLB: 2M/4M pages, fully associative, 8 entries
	0xFF:	CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters
	0xB2:	Instruction TLB: 4KByte pages, 4-way set associative, 64 entries
	0xF0:	64-Byte prefetching
	0xCA:	Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries
0x00000003[0]:	00000000	00000000	00000000	00000000
0x00000004[0]:	1C004121	01C0003F	0000003F	00000000
	EAX[ 4: 0]=Cache_Type:	0x1	(1)	// Cache Type (0=Null, 1=Data, 2=Instruction, 3=Unified).
	EAX[ 7: 5]=Cache_Level:	0x1	(1)	// Cache Level (Starts at 1).
	EAX[    8]=CACHE_SI:	0x1	(1)	// Self Initializing cache level.
	EAX[    9]=CACHE_FA:	0x0	(0)	// Fully Associative cache.
	EAX[25:14]=MaxApicIdShare:	0x1	(1)	// Maximum number of addressable IDs for logical processors sharing this cache (plus 1 encoding).
	EAX[31:26]=MaxApicIdCore:	0x7	(7)	// Maximum number of addressable IDs for processor cores in the physical package (plus 1 encoding).
	EBX[11: 0]=Cache_LineSize:	0x3F	(63)	// System Coherency Line Size (plus 1 encoding).
	EBX[21:12]=Cache_Partitions:	0x0	(0)	// Physical Line partitions (plus 1 encoding).
	EBX[31:22]=Cache_Ways:	0x7	(7)	// Ways of Associativity (plus 1 encoding).
	ECX[31: 0]=Cache_Sets:	0x3F	(63)	// Number of Sets (plus 1 encoding).
	EDX[    0]=CACHE_INVD:	0x0	(0)	// WBINVD/INVD behavior on lower level caches.
	EDX[    1]=CACHE_INCLUSIVENESS:	0x0	(0)	// Cache is inclusive of lower cache levels.
	EDX[    2]=CACHE_COMPLEXINDEX:	0x0	(0)	// Complex Cache Indexing.
0x00000004[1]:	1C004122	01C0003F	0000003F	00000000
	EAX[ 4: 0]=Cache_Type:	0x2	(2)	// Cache Type (0=Null, 1=Data, 2=Instruction, 3=Unified).
	EAX[ 7: 5]=Cache_Level:	0x1	(1)	// Cache Level (Starts at 1).
	EAX[    8]=CACHE_SI:	0x1	(1)	// Self Initializing cache level.
	EAX[    9]=CACHE_FA:	0x0	(0)	// Fully Associative cache.
	EAX[25:14]=MaxApicIdShare:	0x1	(1)	// Maximum number of addressable IDs for logical processors sharing this cache (plus 1 encoding).
	EAX[31:26]=MaxApicIdCore:	0x7	(7)	// Maximum number of addressable IDs for processor cores in the physical package (plus 1 encoding).
	EBX[11: 0]=Cache_LineSize:	0x3F	(63)	// System Coherency Line Size (plus 1 encoding).
	EBX[21:12]=Cache_Partitions:	0x0	(0)	// Physical Line partitions (plus 1 encoding).
	EBX[31:22]=Cache_Ways:	0x7	(7)	// Ways of Associativity (plus 1 encoding).
	ECX[31: 0]=Cache_Sets:	0x3F	(63)	// Number of Sets (plus 1 encoding).
	EDX[    0]=CACHE_INVD:	0x0	(0)	// WBINVD/INVD behavior on lower level caches.
	EDX[    1]=CACHE_INCLUSIVENESS:	0x0	(0)	// Cache is inclusive of lower cache levels.
	EDX[    2]=CACHE_COMPLEXINDEX:	0x0	(0)	// Complex Cache Indexing.
0x00000004[2]:	1C004143	01C0003F	000001FF	00000000
	EAX[ 4: 0]=Cache_Type:	0x3	(3)	// Cache Type (0=Null, 1=Data, 2=Instruction, 3=Unified).
	EAX[ 7: 5]=Cache_Level:	0x2	(2)	// Cache Level (Starts at 1).
	EAX[    8]=CACHE_SI:	0x1	(1)	// Self Initializing cache level.
	EAX[    9]=CACHE_FA:	0x0	(0)	// Fully Associative cache.
	EAX[25:14]=MaxApicIdShare:	0x1	(1)	// Maximum number of addressable IDs for logical processors sharing this cache (plus 1 encoding).
	EAX[31:26]=MaxApicIdCore:	0x7	(7)	// Maximum number of addressable IDs for processor cores in the physical package (plus 1 encoding).
	EBX[11: 0]=Cache_LineSize:	0x3F	(63)	// System Coherency Line Size (plus 1 encoding).
	EBX[21:12]=Cache_Partitions:	0x0	(0)	// Physical Line partitions (plus 1 encoding).
	EBX[31:22]=Cache_Ways:	0x7	(7)	// Ways of Associativity (plus 1 encoding).
	ECX[31: 0]=Cache_Sets:	0x1FF	(511)	// Number of Sets (plus 1 encoding).
	EDX[    0]=CACHE_INVD:	0x0	(0)	// WBINVD/INVD behavior on lower level caches.
	EDX[    1]=CACHE_INCLUSIVENESS:	0x0	(0)	// Cache is inclusive of lower cache levels.
	EDX[    2]=CACHE_COMPLEXINDEX:	0x0	(0)	// Complex Cache Indexing.
0x00000004[3]:	1C03C163	02C0003F	00000FFF	00000006
	EAX[ 4: 0]=Cache_Type:	0x3	(3)	// Cache Type (0=Null, 1=Data, 2=Instruction, 3=Unified).
	EAX[ 7: 5]=Cache_Level:	0x3	(3)	// Cache Level (Starts at 1).
	EAX[    8]=CACHE_SI:	0x1	(1)	// Self Initializing cache level.
	EAX[    9]=CACHE_FA:	0x0	(0)	// Fully Associative cache.
	EAX[25:14]=MaxApicIdShare:	0xF	(15)	// Maximum number of addressable IDs for logical processors sharing this cache (plus 1 encoding).
	EAX[31:26]=MaxApicIdCore:	0x7	(7)	// Maximum number of addressable IDs for processor cores in the physical package (plus 1 encoding).
	EBX[11: 0]=Cache_LineSize:	0x3F	(63)	// System Coherency Line Size (plus 1 encoding).
	EBX[21:12]=Cache_Partitions:	0x0	(0)	// Physical Line partitions (plus 1 encoding).
	EBX[31:22]=Cache_Ways:	0xB	(11)	// Ways of Associativity (plus 1 encoding).
	ECX[31: 0]=Cache_Sets:	0xFFF	(4095)	// Number of Sets (plus 1 encoding).
	EDX[    0]=CACHE_INVD:	0x0	(0)	// WBINVD/INVD behavior on lower level caches.
	EDX[    1]=CACHE_INCLUSIVENESS:	0x1	(1)	// Cache is inclusive of lower cache levels.
	EDX[    2]=CACHE_COMPLEXINDEX:	0x1	(1)	// Complex Cache Indexing.
0x00000005[0]:	00000040	00000040	00000003	00021120
	EAX[15: 0]=MonLineSizeMin:	0x40	(64)	// Smallest monitor line size in bytes.
	EBX[15: 0]=MonLineSizeMax:	0x40	(64)	// Largest monitor-line size in bytes.
	ECX[    0]=EMX:	0x1	(1)	// Enumerate MONITOR/MWAIT extensions.
	ECX[    1]=IBE:	0x1	(1)	// Interrupt Break-Event.
	EDX[ 3: 0]=MWAIT_Number_C0:	0x0	(0)	// Number of C0 sub C-states supported using MWAIT.
	EDX[ 7: 4]=MWAIT_Number_C1:	0x2	(2)	// Number of C1 sub C-states supported using MWAIT.
	EDX[11: 8]=MWAIT_Number_C2:	0x1	(1)	// Number of C2 sub C-states supported using MWAIT.
	EDX[15:12]=MWAIT_Number_C3:	0x1	(1)	// Number of C3 sub C-states supported using MWAIT.
	EDX[19:16]=MWAIT_Number_C4:	0x2	(2)	// Number of C4 sub C-states supported using MWAIT.
0x00000006[0]:	00000075	00000002	00000009	00000000
	EAX[    0]=DTS:	0x1	(1)	// Digital Thermal Sensor.
	EAX[    1]=TURBO_BOOST:	0x0	(0)	// Intel Turbo Boost Technology.
	EAX[    2]=ARAT:	0x1	(1)	// Always Running APIC Timer.
	EAX[    4]=PLN:	0x1	(1)	// Power Limit Notification.
	EAX[    5]=ECMD:	0x1	(1)	// Extended Clock Modulation Duty.
	EAX[    6]=PTM:	0x1	(1)	// Package Thermal Management.
	EBX[ 3: 0]=DTS_ITs:	0x2	(2)	// Number of Interrupt Thresholds in Digital Thermal Sensor.
	ECX[    0]=PERF:	0x1	(1)	// Hardware Coordination Feedback Capability.
	ECX[    1]=ACNT2:	0x0	(0)	// ACNT2 Capability.
	ECX[    3]=ENERGY_PERF_BIAS:	0x1	(1)	// Performance-Energy Bias capability.
0x00000007[0]:	00000000	00000000	00000000	00000000
	EAX[31: 0]=Max07Subleaf:	0x0	(0)	// Reports the maximum supported leaf 7 sub-leaf.
	EBX[    0]=FSGSBASE:	0x0	(0)	// Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE.
	EBX[    3]=BMI1:	0x0	(0)	// The first group of advanced bit manipulation extensions (ANDN, BEXTR, BLSI, BLSMK, BLSR, TZCNT).
	EBX[    4]=HLE:	0x0	(0)	// Hardware Lock Elision.
	EBX[    5]=AVX2:	0x0	(0)	// AVX2 instructions.
	EBX[    7]=SMEP:	0x0	(0)	// Supervisor Mode Execution Protection.
	EBX[    8]=BMI2:	0x0	(0)	// The second group of advanced bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX).
	EBX[    9]=ERMS:	0x0	(0)	// Supports Enhanced REP MOVSB/STOSB.
	EBX[   10]=INVPCID:	0x0	(0)	// INVPCID instruction.
	EBX[   11]=RTM:	0x0	(0)	// 
0x00000008[0]:	00000000	00000000	00000000	00000000
0x00000009[0]:	00000000	00000000	00000000	00000000
	EAX[31: 0]=PLATFORM_DCA_CAP:	0x0	(0)	// Value of PLATFORM_DCA_CAP MSR Bits [31:0] (Offset 1F8h).
0x0000000A[0]:	07300403	00000000	00000000	00000603
	EAX[ 7: 0]=APM_Version:	0x3	(3)	// Version ID of architectural performance monitoring.
	EAX[15: 8]=APM_Counters:	0x4	(4)	// Number of general-purpose performance monitoring counters per logical processor.
	EAX[23:16]=APM_Bits:	0x30	(48)	// Bit width of general-purpose, performance monitoring counters.
	EAX[31:24]=APM_Length:	0x7	(7)	// Length of EBX bit vector to enumerate architectural performance monitoring events.
	EBX[    0]=APM_CC:	0x0	(0)	// Core cycle event not available if 1.
	EBX[    1]=APM_IR:	0x0	(0)	// Instruction retired event not available if 1.
	EBX[    2]=APM_RC:	0x0	(0)	// Reference cycles event not available if 1.
	EBX[    3]=APM_LLCR:	0x0	(0)	// Last-level cache reference event not available if 1.
	EBX[    4]=APM_LLCM:	0x0	(0)	// Last-level cache misses event not available if 1.
	EBX[    5]=APM_BIR:	0x0	(0)	// Branch instruction retired event not available if 1.
	EBX[    6]=APM_BMR:	0x0	(0)	// Branch mispredict retired event not available if 1.
	EDX[ 4: 0]=APM_FC_Number:	0x3	(3)	// Number of fixed-function performance counters.
	EDX[12: 5]=APM_FC_Bits:	0x30	(48)	// Bit width of fixed-function performance counters.
0x0000000B[0]:	00000001	00000002	00000100	00000002
	EAX[ 4: 0]=Topology_Bits:	0x1	(1)	// Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type.
	EBX[15: 0]=Topology_Number:	0x2	(2)	// Number of factory-configured logical processors at this level.
	ECX[ 7: 0]=Topology_Level:	0x0	(0)	// Level number. Same value in ECX input.
	ECX[15: 8]=Topology_Type:	0x1	(1)	// Level Type (0=Invalid, 1=Thread, 2=Core).
	EDX[31: 0]=X2APICID:	0x2	(2)	// x2APIC ID.
0x0000000B[1]:	00000004	00000004	00000201	00000002
	EAX[ 4: 0]=Topology_Bits:	0x4	(4)	// Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type.
	EBX[15: 0]=Topology_Number:	0x4	(4)	// Number of factory-configured logical processors at this level.
	ECX[ 7: 0]=Topology_Level:	0x1	(1)	// Level number. Same value in ECX input.
	ECX[15: 8]=Topology_Type:	0x2	(2)	// Level Type (0=Invalid, 1=Thread, 2=Core).
	EDX[31: 0]=X2APICID:	0x2	(2)	// x2APIC ID.
0x0000000C[0]:	00000000	00000000	00000000	00000000
0x0000000D[0]:	00000007	00000340	00000340	00000000
	EAX[31: 0]=XFeatureSupportedMaskLo:	0x7	(7)	// The lower 32 bits of XCR0(XFEATURE_ENABLED_MASK register).
	EBX[31: 0]=XFeatureEnabledSizeMax:	0x340	(832)	// Size in bytes of XSAVE/XRSTOR area for the currently enabled features in XCR0.
	ECX[31: 0]=XFeatureSupportedSizeMax:	0x340	(832)	// Size in bytes of XSAVE/XRSTOR area for all features that the core supports.
	EDX[31: 0]=XFeatureSupportedMaskHi:	0x0	(0)	// The upper 32 bits of XCR0(XFEATURE_ENABLED_MASK register).
0x0000000D[1]:	00000001	00000000	00000000	00000000
	EAX[    0]=XSAVEOPT:	0x1	(1)	// XSAVEOPT is available.
0x0000000D[2]:	00000100	00000240	00000000	00000000
	EAX[31: 0]=YmmSaveStateSize:	0x100	(256)	// YMM save state byte size.
	EBX[31: 0]=YmmSaveStateOffset:	0x240	(576)	// YMM save state byte offset.
0x00000000[0]:	80000008	00000000	00000000	00000000
	EAX[31: 0]=LFuncStd:	0x80000008	(2147483656)	// largest standard function.
	Vendor:	GenuineIntel
0x80000001[0]:	00000000	00000000	00000001	28100800
	EBX[15: 0]=BrandId16:	0x0	(0)	// 16-bit Brand ID.
	EBX[31:28]=PkgType:	0x0	(0)	// Package type (Family[7:0] >= 10h).
	ECX[    0]=LahfSahf:	0x1	(1)	// LAHF and SAHF instruction support in 64-bit mode.
	ECX[    1]=CmpLegacy:	0x0	(0)	// core multi-processing legacy mode.
	ECX[    2]=SVM:	0x0	(0)	// secure virtual machine.
	ECX[    3]=ExtApicSpace:	0x0	(0)	// extended APIC space.
	ECX[    4]=AltMovCr8:	0x0	(0)	// LOCK MOV CR0 means MOV CR8.
	ECX[    5]=ABM:	0x0	(0)	// advanced bit manipulation (LZCNT).
	ECX[    6]=SSE4A:	0x0	(0)	// SSE4A instructions.
	ECX[    7]=MisAlignSse:	0x0	(0)	// misaligned SSE mode.
	ECX[    8]=3DNowPrefetch:	0x0	(0)	// PREFETCH and PREFETCHW instruction support.
	ECX[    9]=OSVW:	0x0	(0)	// OS visible workaround.
	ECX[   10]=IBS:	0x0	(0)	// instruction based sampling.
	ECX[   11]=XOP:	0x0	(0)	// extended operation support.
	ECX[   12]=SKINIT:	0x0	(0)	// SKINIT and STGI are supported, independent of the value of MSRC000_0080[SVME].
	ECX[   13]=WDT:	0x0	(0)	// watchdog timer support.
	ECX[   15]=LWP:	0x0	(0)	// lightweight profiling support.
	ECX[   16]=FMA4:	0x0	(0)	// 4-operand FMA instruction support.
	ECX[   19]=BIT_NODEID:	0x0	(0)	// Indicates support for MSRC001_100C[NodeId, NodesPerProcessor].
	ECX[   21]=TBM:	0x0	(0)	// Trailing bit manipulation instruction support.
	ECX[   22]=TopologyExtensions:	0x0	(0)	// Topology extensions support.
	EDX[   11]=SYSCALL:	0x1	(1)	// SYSCALL and SYSRET instructions.
	EDX[   20]=XD:	0x1	(1)	// Execution Disable Bit.
	EDX[   22]=MmxExt:	0x0	(0)	// AMD extensions to MMX instructions.
	EDX[   25]=FFXSR:	0x0	(0)	// FXSAVE and FXRSTOR instruction optimizations.
	EDX[   26]=Page1GB:	0x0	(0)	// 1-GB large page support.
	EDX[   27]=RDTSCP:	0x1	(1)	// RDTSCP and TSC_AUX.
	EDX[   29]=LM:	0x1	(1)	// 64-bit long mode.(x86-64)
	EDX[   30]=3DNowExt:	0x0	(0)	// AMD extensions to 3DNow! instructions.
	EDX[   31]=3DNow:	0x0	(0)	// 3DNow! instructions.
0x80000002[0]:	20202020	49202020	6C65746E	20295228
0x80000003[0]:	65726F43	294D5428	2D336920	30313332
0x80000004[0]:	5043204D	20402055	30312E32	007A4847
	Brand:	       Intel(R) Core(TM) i3-2310M CPU @ 2.10GHz
0x80000005[0]:	00000000	00000000	00000000	00000000
	EAX[ 7: 0]=L1ITlb2and4MSize:	0x0	(0)	// Instruction TLB number of entries for 2-MB and 4-MB pages.
	EAX[15: 8]=L1ITlb2and4MAssoc:	0x0	(0)	// Instruction TLB associativity for 2-MB and 4-MB pages.
	EAX[23:16]=L1DTlb2and4MSize:	0x0	(0)	// Data TLB number of entries for 2-MB and 4-MB pages.
	EAX[31:24]=L1DTlb2and4MAssoc:	0x0	(0)	// Data TLB associativity for 2-MB and 4-MB pages.
	EBX[ 7: 0]=L1ITlb4KSize:	0x0	(0)	// Instruction TLB number of entries for 4 KB pages.
	EBX[15: 8]=L1ITlb4KAssoc:	0x0	(0)	// Instruction TLB associativity for 4KB pages.
	EBX[23:16]=L1DTlb4KSize:	0x0	(0)	// Data TLB number of entries for 4 KB pages.
	EBX[31:24]=L1DTlb4KAssoc:	0x0	(0)	// Data TLB associativity for 4 KB pages.
	ECX[ 7: 0]=L1DcLineSize:	0x0	(0)	// L1 data cache line size in bytes.
	ECX[15: 8]=L1DcLinesPerTag:	0x0	(0)	// L1 data cache lines per tag.
	ECX[23:16]=L1DcAssoc:	0x0	(0)	// L1 data cache associativity.
	ECX[31:24]=L1DcSize:	0x0	(0)	// L1 data cache size in KB.
	EDX[ 7: 0]=L1IcLineSize:	0x0	(0)	// L1 instruction cache line size in bytes
	EDX[15: 8]=L1IcLinesPerTag:	0x0	(0)	// L1 instruction cache lines per tag.
	EDX[23:16]=L1IcAssoc:	0x0	(0)	// L1 instruction cache associativity.
	EDX[31:24]=L1IcSize:	0x0	(0)	// L1 instruction cache size KB.
0x80000006[0]:	00000000	00000000	01006040	00000000
	EAX[11: 0]=L2ITlb2and4MSize:	0x0	(0)	// L2 instruction TLB number of entries for 2 MB and 4 MB pages.
	EAX[15:12]=L2ITlb2and4MAssoc:	0x0	(0)	// L2 instruction TLB associativity for 2 MB and 4 MB pages.
	EAX[27:16]=L2DTlb2and4MSize:	0x0	(0)	// L2 data TLB number of entries for 2 MB and 4 MB pages.
	EAX[31:28]=L2DTlb2and4MAssoc:	0x0	(0)	// L2 data TLB associativity for 2 MB and 4 MB pages.
	EBX[11: 0]=L2ITlb4KSize:	0x0	(0)	// L2 instruction TLB number of entries for 4 KB pages.
	EBX[15:12]=L2ITlb4KAssoc:	0x0	(0)	// L2 instruction TLB associativity for 4 KB pages.
	EBX[27:16]=L2DTlb4KSize:	0x0	(0)	// L2 data TLB number of entries for 4 KB pages.
	EBX[31:28]=L2DTlb4KAssoc:	0x0	(0)	// L2 data TLB associativity for 4 KB pages.
	ECX[ 7: 0]=L2LineSize:	0x40	(64)	// L2 cache line size in bytes.
	ECX[11: 8]=L2LinesPerTag:	0x0	(0)	// L2 cache lines per tag.
	ECX[15:12]=L2Assoc:	0x6	(6)	// L2 cache associativity.
	ECX[31:16]=L2Size:	0x100	(256)	// L2 cache size in KB.
	EDX[ 7: 0]=L3LineSize:	0x0	(0)	// L3 cache line size in bytes.
	EDX[11: 8]=L3LinesPerTag:	0x0	(0)	// L3 cache lines per tag.
	EDX[15:12]=L3Assoc:	0x0	(0)	// L3 cache associativity.
	EDX[31:18]=L3Size:	0x0	(0)	// L3 cache size.
0x80000007[0]:	00000000	00000000	00000000	00000100
	EDX[    0]=TS:	0x0	(0)	// Temperature sensor.
	EDX[    1]=FID:	0x0	(0)	// Frequency ID control.
	EDX[    2]=VID:	0x0	(0)	// Voltage ID control.
	EDX[    3]=TTP:	0x0	(0)	// THERMTRIP.
	EDX[    4]=HTC:	0x0	(0)	// TM: Hardware thermal control (HTC).
	EDX[    6]=100MHzSteps:	0x0	(0)	// 100 MHz multiplier Control.
	EDX[    7]=HwPstate:	0x0	(0)	// Hardware P-state control.
	EDX[    8]=TscInvariant:	0x1	(1)	// TSC invariant.
	EDX[    9]=CPB:	0x0	(0)	// Core performance boost.
	EDX[   10]=EffFreqRO:	0x0	(0)	// Read-only effective frequency interface.
0x80000008[0]:	00003024	00000000	00000000	00000000
	EAX[ 7: 0]=PhysAddrSize:	0x24	(36)	// Maximum physical byte address size in bits.
	EAX[15: 8]=LinAddrSize:	0x30	(48)	// Maximum linear byte address size in bits.
	EAX[23:16]=GuestPhysAddrSize:	0x0	(0)	// Maximum guest physical byte address size in bits.
	ECX[ 7: 0]=NC:	0x0	(0)	// number of physical cores - 1.
	ECX[15:12]=ApicIdCoreIdSize:	0x0	(0)	// APIC ID size. The number of bits in the initial APIC20[ApicId] value that indicate core ID within a processor.


 


参考文献——
《Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes:1, 2A, 2B, 2C, 3A, 3B, and 3C》. May 2012.http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
《Intel® Architecture Instruction Set Extensions Programming Reference》. FEBRUARY 2012.http://software.intel.com/file/41604
《Intel® Processor Identification and the CPUID Instruction》. April 2012. http://developer.intel.com/content/www/us/en/processors/processor-identification-cpuid-instruction-note.html
《AMD64 Architecture Programmer's Manual Volume 3: General Purpose and System Instructions》. December 2011.http://support.amd.com/us/Processor_TechDocs/24594_APM_v3.pdf
《AMD CPUID Specification》. September 2010. http://support.amd.com/us/Embedded_TechDocs/25481.pdf
《x86 architecture CPUID》. http://www.sandpile.org/x86/cpuid.htm
《Haswell New Instruction Descriptions Now Available! 》. Mark Buxton. http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
[IDF2012]ARCS002《Introduction to the upcoming Intel® Advanced Vector Extensions 2 (Intel® AVX2)》. 王有伟, Henry Ou. 2012-4.
[IDF2012]ARCS002《即将推出的英特尔® 高级矢量扩展指令集2(英特尔® AVX2)介绍》. 王有伟, Henry Ou. 2012-4.
《x86/x64 指令系统》. mik(邓志). http://www.mouseos.com/x64/default.html
《[x86]SIMD指令集发展历程表(MMX、SSE、AVX等)》. http://www.cnblogs.com/zyl910/archive/2012/02/26/x86_simd_table.html
《如何在各个版本的VC及64位下使用CPUID指令》. http://www.cnblogs.com/zyl910/archive/2012/05/21/vcgetcpuid.html
《[VC兼容32位和64位] 检查MMX和SSE系列指令集的支持级别》. http://www.cnblogs.com/zyl910/archive/2012/05/25/checksimd64.html
《[VC] CPUIDFIELD:CPUID字段的统一编号、读取方案。范例:检查SSE4A、AES、PCLMULQDQ指令》. http://www.cnblogs.com/zyl910/archive/2012/06/29/getcpuidfield.html
《[VC] 检测AVX系列指令集的支持级别(AVX、AVX2、F16C、FMA、FMA4、XOP)》. http://www.cnblogs.com/zyl910/archive/2012/07/04/checkavx.html
《[C#] cmdarg_ui:“简单参数命令行程序”的通用图形界面》.  http://www.cnblogs.com/zyl910/archive/2012/06/19/cmdarg_ui.html

 

源码下载——
http://files.cnblogs.com/zyl910/ccpuid.rar

 

新版本——
http://www.cnblogs.com/zyl910/archive/2012/08/22/ccpuid_v101.html
ccpuid:CPUID信息模块 V1.01版,支持GCC(兼容32位或64位的Windows/Linux)

 

你可能感兴趣的:(#All,-,所有,微机原理,DOS,BIOS与硬件接口编程,SIMD)