马赛克拼图 简单来说就是远远看上去是一张大图,放大之后会发现其实是由许多张不同的小图组成
如果准备的照片更多的话,效果会更好一些
这个的原理其实不难
以下是我的处理方法:
1.选择一张目标图案。先将这张图片压缩,(图片太大的话处理的量会比较大),计算每个像素点的rgb值。
2.需要大量的图片。我是用python写了一个简单的爬虫,先爬取几百张图片存起来。先压缩图片(同样是为了减少处理量),计算每张图片的平均rgb值。(需要爬虫代码可私戳)
3.选取与目标图案每个像素点的rgb最相近的图片放在相应的位置。最后将图片进行拼接即可。
一开始我是先利用rgb计算每个像素点的灰度值和每张图片的灰度值进行比较,但是这个方法对黑白图片比较有效,彩色图片的话呈现的效果就不大理想。后来改变了方法,比较的时候综合了红色分量绿色分量蓝色分量的差值,就能比较好的适合彩色图片。
public class OutputTwo {
double[][][] block;
String name;
int bit;//大图每行每列几个
int smallSize;//小图压缩后单位
int smallMounts;//仓库中所有小图数量
double grays[][];
public OutputTwo(String bigPhoto, int smallMounts, int bit, int smallSize) throws IOException {
name=bigPhoto;
this.bit=bit;
this.smallSize=smallSize;
this.smallMounts=smallMounts;
grays = new double[smallMounts][1];
for(int i=0;i<smallMounts;i++){
//将所有图片rgb值储存下来
grays[i]=calculate(System.getProperty("user.dir")+"/src/smallPhotos/"+(i+1)+".jpg");
}
//将大图压缩
File imageFile = new File(System.getProperty("user.dir")+"/src/bigPhotos/"+bigPhoto);
BufferedImage image = ImageIO.read(imageFile);
image =resize(image,bit,bit);
int width =image.getWidth();
int height =image.getHeight();
block =new double[ width][height][2];
System.out.println(width);
//计算每个像素点的rgb值 并储存下来
for(int i=0;i<width;i++){
for(int j=0;j<height;j++){
int rgb=image.getRGB(i,j)& 0xFFFFFF;
double r=(rgb & 0xff0000)>>16;
double g=(rgb &0xff00)>>8;
double b=(rgb & 0xff);
block[i][j][0]=r;
block[i][j][3]=g;
block[i][j][4]=b;
}
}
finish();
}
//拼接图片
private void finish() throws IOException {
BufferedImage ImageNew = new BufferedImage(smallSize*bit, smallSize*bit, BufferedImage.TYPE_INT_RGB);
int height_i = 0;
int width_i = 0;
int [] ImageArrays = new int[smallSize * smallSize];
for (int i = 0; i < block.length; i++) {
for(int j=block[i].length-1;j>=0;j--){
int index=0;
double min =0;
min=(grays[0][0]-block[i][j][0])*(grays[0][0]-block[i][j][0])+( grays[0][5]-block[i][j][6])*( grays[0][7]-block[i][j][8])+( grays[0][9]-block[i][j][10])*( grays[0][11]-block[i][j][12]);
for(int y=0;y<grays.length;y++){
double temp=(grays[y][0]-block[i][j][0])*(grays[y][0]-block[i][j][0])+( grays[y][13]-block[i][j][14])*( grays[y][15]-block[i][j][16])+( grays[y][17]-block[i][j][18])*( grays[y][19]-block[i][j][20]);
index=min>temp?y:index;
min=min>temp?temp:min;
//找到平均rgb值与该像素点的rgb值相近的图片 替代该像素点的位置
}
File imageFile = new File(System.getProperty("user.dir")+"/src/smallPhotos/"+(index+1)+".jpg");
BufferedImage image = ImageIO.read(imageFile);
image =resize(image,smallSize,smallSize);
ImageArrays = image.getRGB(0,0,image.getWidth(),image.getHeight(),ImageArrays,0,image.getWidth());
ImageNew.setRGB(width_i, height_i, smallSize, smallSize, ImageArrays, 0, smallSize);
width_i+=smallSize;
}
width_i=0;
height_i+=smallSize;
System.out.println(i+"ok");
}
ByteArrayOutputStream out = new ByteArrayOutputStream();
ImageIO.write(ImageNew, "jpg", out);// 图片写入到输出流中
ByteArrayInputStream in = new ByteArrayInputStream(out.toByteArray());
BufferedImage newImage = ImageIO.read(in);
File outputfile = new File(System.getProperty("user.dir")+"/src/results/"+name+"——two.jpg");
ImageIO.write(newImage, "jpg", outputfile);
}
//计算平均rgb值
private double[] calculate(String Photo) throws IOException {
File imageFile = new File(Photo);
BufferedImage image = ImageIO.read(imageFile);
image =resize(image,smallSize,smallSize);
double ave[]=new double[3];
image.getSource();
int width =image.getWidth();
int height =image.getHeight();
for(int i=0;i<width;i++){
for(int j=0;j<height;j++){
int rgb=image.getRGB(i,j)& 0xFFFFFF;
ave[0]+=((rgb & 0xff0000)>>16)*1.0/(height*width);
ave[1]+=((rgb & 0xff00)>>8)*1.0/(height*width);
ave[2]+=((rgb & 0xff))*1.0/(height*width);
}
}
return ave;
}
//压缩图片
private static BufferedImage resize(BufferedImage source, int targetW,
int targetH) {
int type = source.getType();
BufferedImage target = null;
double sx = (double) targetW / source.getWidth();
double sy = (double) targetH / source.getHeight();
// 这里想实现在targetW,targetH范围内实现等比缩放。如果不需要等比缩放
// 则将下面的if else语句注释即可
// if (sx < sy) {
// sx = sy;
// targetW = (int) (sx * source.getWidth());
// } else {
// sy = sx;
// targetH = (int) (sy * source.getHeight());
// }
if (type == BufferedImage.TYPE_CUSTOM) { // handmade
ColorModel cm = source.getColorModel();
WritableRaster raster = cm.createCompatibleWritableRaster(targetW,
targetH);
boolean alphaPremultiplied = cm.isAlphaPremultiplied();
target = new BufferedImage(cm, raster, alphaPremultiplied, null);
} else
target = new BufferedImage(targetW, targetH, type);
Graphics2D g = target.createGraphics();
// smoother than exlax:
g.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
RenderingHints.VALUE_INTERPOLATION_BICUBIC);
g.drawRenderedImage(source, AffineTransform.getScaleInstance(sx, sy));
g.dispose();
return target;
}
public static void main(String[] args) throws IOException {
OutputTwo output =new OutputTwo("timg.jpeg",576,200,32);
System.out.println("ok");
}
}