pytorch图像增强

https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=2247491791&idx=3&sn=f7ac3864154372d9d5503397d5db6b44&chksm=ec1c0d36db6b8420c6d06f086b2bf736dd41a27e34442e6bcb836bec1d3a09d66c4ae1a34b1a&mpshare=1&scene=23&srcid=&sharer_sharetime=1572490853805&sharer_shareid=b45689476c673cb095d9afc67051823e#rd

pytorch图像增强,主要是借用torchvision程序包。还有如imgaug等工具

https://pypi.org/project/torchvision/

torchvision 微信介绍

https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=2247489013&idx=2&sn=1b7302593e864a1df383975e4ec24b16&chksm=ec1ff80cdb68711a48e10a14613a78955d94de91da92a8c6f95bbf1ede3ef8828cd521441fef&mpshare=1&scene=24&srcid=0528787IjdUloErbEu4V8XR4&key=b872184137e9e0f6bf5430cb75afb17ed2ad7a5dc60d3d048beb7b215f14f0fad1466481ba2660f924ae63cc65de42999396ae4e94ae394c3ca42d0a23925568f178c36d70d999e7cb83bce12a305176&ascene=14&uin=NDYyODk2ODM1&devicetype=Windows+8.1&version=62070152&lang=zh_CN&pass_ticket=cfpCbxAmMkQaC4fmQfKa2FVmv%2FBIKqRjClpP%2BXkc5FSAXTHYLWZ4TjUiyjc8mc0K

本文主要介绍Pytorch中torchvision.transforms 几个数据增强函数的使用。

from torchvision import transformsfrom PIL import Imagefrom torchvision.transforms import functional as TFimport torch# 读取一张测试图片path = "F:/jupyter/OpenCV-Python-Tutorial/Tutorial/sample_img/lena.jpg"img = Image.open(path)img

对 Torch 数据操作的变换

  • ToPILImage

Convert a tensor or an ndarray to PIL Image.

# 将 ``PIL Image`` or ``numpy.ndarray`` 转换成 tensor 再转成 PIL Image.transform = transforms.Compose([    transforms.ToTensor(),     # Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.    transforms.ToPILImage()     # Convert a tensor or an ndarray to PIL Image.])
new_img = transform(img)new_img

 

  • Normalize

提供一个所有通道的均值(mean) 和方差(std),会将原始数据进行归一化,操作的数据格式是 Tensor

 

mean = [0.5, 0.5, 0.5]

std = [0.5, 0.5, 0.5]transform = transforms.Compose([    transforms.ToTensor(),    transforms.Normalize(mean, std),     transforms.ToPILImage() # 这里是为了可视化,故将其再转为 PIL,以下同理])
new_img = transform(img)new_img

 

对 PIL 数据操作的变换

 

  • ToTensor

将 PIL Image 或者 numpy.ndarray 格式的数据转换成 tensor

transform = transforms.Compose([    transforms.ToTensor(), # Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.])
new_img = transform(img)
  • Resize

Resize the input PIL Image to the given size.

参数

  • size: 一个值的话,高和宽共享,否则对应是 (h, w)

  • interpolation: 插值方式 默认 PIL.Image.BILINEAR

size = (100, 100)transform = transforms.Compose([    transforms.Resize(size),])
new_img = transform(img)new_img
  • CenterCrop

Crops the given PIL Image at the center.
裁剪一定 size 的图片,以图片的中心往外

 

参数

  • size: 一个值的话,高和宽共享,否则对应是 (h, w),若是该值超过原始图片尺寸,则外围用 0 填充

size = (200, 500)transform = transforms.Compose([    transforms.CenterCrop(size),])
new_img = transform(img)new_img
  • Pad

Pad the given PIL Image on all sides with the given "pad" value.

 

参数

  • padding:填充的宽度,可以是一个 值、或者元组,分别对应 4 个边

  • fill:填充的值,可以是一个值(所有通道都用该值填充),或者一个 3 元组(RGB 三通道) 当 padding_mode=constant 起作用

  • padding_mode:填充的模式:constant, edge(填充值为边缘), reflect (从边缘往内一个像素开始做镜像) or symmetric(从边缘做镜像).

padding = (10, 20, 30, 40)transform = transforms.Compose([    transforms.Pad(padding, padding_mode="symmetric"), ])
new_img = transform(img)new_img
  • Lambda

根据用户自定义的方式进行变换

lambd = lambda x: TF.rotate(x, 100)

transform = transforms.Compose([    transforms.Lambda(lambd)])
new_img = transform(img)new_img

 

  • RandomApply

给定一定概率从一组 transformations 应用

transform = [transforms.Pad(100, fill=(0, 255, 255)), transforms.CenterCrop(100), transforms.RandomRotation(20)]transform = transforms.Compose([    transforms.RandomApply(transform, p=0.5)])
new_img = transform(img)new_img
  • RandomChoice

Apply single transformation randomly picked from a list

transform = [transforms.Pad(100, fill=(0, 255, 255)), transforms.CenterCrop((100, 300))]transform = transforms.Compose([    transforms.RandomChoice(transform)])
new_img = transform(img)new_img
  • RandomOrder

Apply a list of transformations in a random order

transform = [transforms.Pad(100, fill=(0, 255, 255)), transforms.CenterCrop((50, 50))]transform = transforms.Compose([    transforms.RandomOrder(transform)])
new_img = transform(img)new_img

 

  • RandomCrop

Crop the given PIL Image at a random location. 

参数:

  • size

  • padding=None

  • pad_if_needed=False

  • fill=0

  • padding_mode='constant'

transform = transforms.Compose([    transforms.RandomCrop((100, 300))])
new_img = transform(img)new_img

 

  • RandomHorizontalFlip & RandomVerticalFlip

Horizontally/Vertically flip the given PIL Image randomly with a given probability. 

transform = transforms.Compose([    transforms.RandomHorizontalFlip(p=0.5),    transforms.RandomVerticalFlip(p=0.5)])
new_img = transform(img)new_img
  • RandomResizedCrop

Crop the given PIL Image to random size and aspect ratio. 

参数:

  • size: expected output size of each edge

  • scale: range of size of the origin size cropped

  • ratio: range of aspect ratio of the origin aspect ratio cropped

  • interpolation: Default: PIL.Image.BILINEAR

transform = transforms.Compose([    transforms.RandomResizedCrop((200, 300))])
new_img = transform(img)new_img

 

  • RandomSizedCrop

已经废弃,由 RandomResizedCrop. 取代了

  • FiveCrop

将给定的 PIL 图像裁剪成四个角和中间的裁剪

UNIT_SIZE = 200 # 每张图片的宽度是固定的size = (100, UNIT_SIZE)transform = transforms.Compose([    transforms.FiveCrop(size)])
new_img = transform(img)delta = 20  # 偏移量,几个图片间隔看起来比较明显new_img_2 = Image.new("RGB", (UNIT_SIZE*5+delta, 100))top_right = 0for im in new_img:    new_img_2.paste(im, (top_right, 0)) # 将image复制到target的指定位置中    top_right += UNIT_SIZE + int(delta/5) # 左上角的坐标,因为是横向的图片,所以只需要 x 轴的值变化就行
new_img_2
  • TenCrop

裁剪一张图片的 4 个角以及中间得到指定大小的图片,并且进行水平翻转 / 竖直翻转 共 10 张

参数:

  • size

  • vertical_flip=False (默认是水平翻转)

UNIT_SIZE = 200 # 每张图片的宽度是固定的size = (100, UNIT_SIZE)
transform = transforms.Compose([    transforms.TenCrop(size, vertical_flip=True)])
new_img = transform(img)
delta = 50  # 偏移量,几个图片间隔看起来比较明显new_img_2 = Image.new("RGB", (UNIT_SIZE*10+delta, 100))top_right = 0for im in new_img:    new_img_2.paste(im, (top_right, 0)) # 将image复制到target的指定位置中    top_right += UNIT_SIZE + int(delta/10) # 左上角的坐标,因为是横向的图片,所以只需要 x 轴的值变化就行
new_img_2

 

  • LinearTransformation

白化变换,笔者不是很理解,但是好像消耗的内存应该比较大

 

  • ColorJitter

Randomly change the brightness, contrast and saturation of an image. 随机改变图像的亮度、对比度和饱和度

 

参数:

  • brightness:亮度

  • contrast:对比度

  • saturation:饱和度

  • hue:色调  0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.

transform = transforms.Compose([    transforms.ColorJitter(brightness=(0, 36), contrast=(        0, 10), saturation=(0, 25), hue=(-0.5, 0.5))])
new_img = transform(img)new_img
  • RandomRotation

一定角度旋转图像

 

参数:

  • degrees:旋转的角度

  • resample=False:重采样过滤器 可选 {PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}

  • expand=False:如果为 True ,则展开输出,使其足够大以容纳整个旋转后的图像。如果为 Fales 或省略,使输出图像的大小与输入图像相同。

  • center=None 旋转中心

transform = transforms.Compose([

    transforms.RandomRotation(30, resample=Image.BICUBIC, expand=False, center=(100, 300))])
new_img = transform(img)new_img

 

  • RandomAffine

保持图像中心不变的随机仿射变换,可以进行随心所欲的变化

参数:

  • degrees:旋转角度

  • translate:水平偏移

  • scale:

  • shear: 裁剪

  • resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional)

  • fillcolor: 图像外部填充颜色  int

transform = transforms.Compose([

    transforms.RandomAffine(degrees=30, translate=(0, 0.2), scale=(0.9, 1), shear=(6, 9), fillcolor=66)])
new_img = transform(img)new_img
  • Grayscale

转换图像灰度。

 

参数:

  • num_output_channels:1 或者 3  输出图像所需的通道数 (若是 3 的话,则代表三个通道的值是一样的)

ransform = transforms.Compose([    transforms.Grayscale(num_output_channels=3)])
new_img = transform(img)new_img_array = np.array(new_img)r, g, b = new_img_array[:, :, 0], new_img_array[:, :, 1], new_img_array[:, :, 2]print(r == b)print("shape:", new_img_array.shape)new_img[[ True  True  True ...  True  True  True] [ True  True  True ...  True  True  True] [ True  True  True ...  True  True  True] ... [ True  True  True ...  True  True  True] [ True  True  True ...  True  True  True] [ True  True  True ...  True  True  True]]shape: (400, 400, 3)
  • RandomGrayscale

Randomly convert image to grayscale with a probability of p (default 0.1). 以一定的概率对图像进行灰度化,转换后的图片还是 3 通道的

transform = transforms.Compose([    transforms.RandomGrayscale(p=0.6)])
new_img = transform(img)print(np.array(new_img).shape)new_img(400, 400, 3)
  • RandomPerspective

对给定的 PIL 图像以给定的概率随机进行透视变换。

transform = transforms.Compose([    transforms.RandomPerspective(distortion_scale=1, p=1, interpolation=3)])
new_img = transform(img)new_img

其他

 

transforms.Compose 函数是将几个变化整合在一起的,变换是有顺序的,需要注意是变换函数是对 PIL 数据格式进行还是 Torch 数据格式进行变换

 

 

 

 

 

 

 

你可能感兴趣的:(pytorch图像增强)