作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/all-paths-from-source-to-target/description/
Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, and return them in any order.
The graph is given as follows: the nodes are 0, 1, …, graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []]
Output: [[0,1,3],[0,2,3]]
Explanation: The graph looks like this:
0--->1
| |
v v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
给出了一个有向无环图,求从起点到终点的所有路径。图的表示方法是,共有n个节点,其数字分别为0…n-1,给出的图graph的每个位置对应的是第i个节点能到达的下一个节点的序号位置。比如题中graph[0] = [1,2]表示图的起点0指向了1,2两个节点。
经典的dfs的题目啊,第一遍没做这个题的原因是没看懂题目。。
直接使用dfs的模板公式即可,要注意的是给出的path默认就带着起点0,每次添加的是下个节点n不是当前节点pos。停止的条件是 pos == len(graph) - 1。
代码:
class Solution(object):
def allPathsSourceTarget(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[List[int]]
"""
res = []
self.dfs(graph, res, 0, [0])
return res
def dfs(self, graph, res, pos, path):
if pos == len(graph) - 1:
res.append(path)
return
else:
for n in graph[pos]:
self.dfs(graph, res, n, path + [n])
二刷的时候对这个题写法更简单了,因为题目给出的是有向无环图,到达根节点之后可以继续搜索,但是不可能再次到达终点了。
class Solution(object):
def allPathsSourceTarget(self, graph):
"""
:type graph: List[List[int]]
:rtype: List[List[int]]
"""
res = []
self.dfs(graph, 0, len(graph) - 1, res, [0])
return res
def dfs(self, graph, start, end, res, path):
if start == end:
res.append(path)
for node in graph[start]:
self.dfs(graph, node, end, res, path + [node])
在Python代码里面可以随便就生成了新的列表,导致回溯过程看不清楚,但是C++版本的回溯法因为只用了一个res和一个path,所以回溯过程看的很清楚。
class Solution {
public:
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
vector<int> path;
path.push_back(0);
dfs(graph, 0, graph.size() - 1, path);
return res;
}
private:
vector<vector<int>> res;
void dfs(vector<vector<int>>& graph, int start, int end, vector<int> path) {
if (start == end) {
res.push_back(path);
} else {
for (int node : graph[start]) {
path.push_back(node);
dfs(graph, node, end, path);
path.pop_back();
}
}
}
};
2018 年 3 月 20 日 ————阳光明媚~
2018 年 12 月 2 日 —— 又到了周日