Python 和 CLI(命令行界面)的快速、可扩展的进度条
tqdm
源自阿拉伯语 taqaddum,意为“进步”,同时也是西班牙语“我爱你”的缩写 (te quiero demasiado)。
pip install tqdm
直接传入一个可迭代对象,如列表
from tqdm import tqdm
from time import sleep
text = ''
l = ['a', 'b', 'c', 'd']
for x in tqdm(l):
sleep(0.25)
text = text + x
直接传入一个可迭代对象,如列表
from tqdm import tqdm
from time import sleep
text = ''
l = ['a', 'b', 'c', 'd']
for x in tqdm(l):
sleep(0.25)
text = text + x
trange(i)
相当于 tqdm(range(i))
from time import sleep
from tqdm import trange
for i in trange(100):
sleep(0.01)
允许外部实例化
from tqdm import tqdm
from time import sleep
pbar = tqdm(['a', 'b', 'c', 'd'])
for char in pbar:
sleep(0.25)
pbar.set_description('Processing %s' % char)
使用 with
语句手动控制 tqdm()
更新
from tqdm import tqdm
from time import sleep
with tqdm(total=100) as pbar:
for i in range(10):
sleep(0.1)
pbar.update(10)
像操作文件一样,tqdm()
可以赋值给一个变量,别忘了 del
或 close()
from tqdm import tqdm
from time import sleep
pbar = tqdm(total=100)
for i in range(10):
sleep(0.1)
pbar.update(10)
pbar.close()
设置描述:set_description()
,显示在左边
设置后缀:set_postfix()
,显示在右边
from time import sleep
from tqdm import tqdm, trange
from random import random, randint
with trange(10) as t:
for i in t:
t.set_description('GEN %i' % i) # 描述显示在左边
t.set_postfix(loss=random(), gen=randint(1, 999), str='h', lst=[1, 2]) # 后缀显示在右边,根据参数自动格式化
sleep(0.1)
with tqdm(total=10, bar_format="{postfix[0]} {postfix[1][value]:>8.2g}", postfix=["Batch", dict(value=0)]) as t:
for i in range(10):
sleep(0.1)
t.postfix[1]["value"] = i / 2
t.update()
详细阅读:Description and additional stats
from time import sleep
from tqdm.auto import trange
for i in trange(4, desc='1st loop'):
for j in trange(5, desc='2nd loop'):
for k in trange(50, desc='3rd loop', leave=False):
sleep(0.01)
import os
import urllib.request
from tqdm import tqdm
class TqdmUpTo(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
'''更新进度条
:param b: 已转移的块数
:param bsize: 每个块的大小
:param tsize: 总大小
:return:
'''
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
url = "https://caspersci.uk.to/matryoshka.zip"
with TqdmUpTo(unit='B', unit_scale=True, unit_divisor=1024, miniters=1, desc=os.path.basename(url)) as t:
urllib.request.urlretrieve(url, filename=os.devnull, reporthook=t.update_to, data=None)
t.total = t.n
调用 tqdm.pandas
import numpy as np
import pandas as pd
from tqdm import tqdm
df = pd.DataFrame(np.random.randint(0, 100, (100000, 6)))
tqdm.pandas(desc="my bar!")
df.progress_apply(lambda x: x ** 2)
df.groupby(0).progress_apply(lambda x: x ** 2)
from tqdm.keras import TqdmCallback
...
model.fit(..., verbose=0, callbacks=[TqdmCallback()])
实例
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense
from tqdm.keras import TqdmCallback
(X, y), (_, _) = mnist.load_data()
X = X.reshape(len(X), -1)
X = X.astype('float32')
X = (X - 127) / 127
y = np_utils.to_categorical(y, num_classes=10)
model = Sequential()
model.add(Dense(20, input_shape=(784,), activation='relu'))
model.add(Dense(10, activation='sigmoid'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=20, batch_size=64, verbose=0, callbacks=[TqdmCallback()])
from tqdm.notebook import trange, tqdm
from time import sleep
for i in trange(3, desc='1st loop'):
for j in tqdm(range(100), desc='2nd loop'):
sleep(0.01)