强化学习实例

机器学习算法完整版见fenghaootong-github

强化学习应用实例

导入模块

# -*- coding: utf-8 -*-

import numpy as np
import pandas as pd
import time

设置参数

#产生伪随机数列
np.random.seed(2)

N_STATES = 6
ACTIONS = ['left', 'right']
EPSILON = 0.9  
ALPHA = 0.1
LAMBDA = 0.9
MAX_EPISODES = 13
FRESH_TIME = 0.3 #走一步的时间

构建一个table

def build_Q_tabel(n_states, actions):
    table = pd.DataFrame(np.zeros((n_states, len(actions))), columns = actions)
    return table   


build_Q_tabel(N_STATES, ACTIONS)
left right
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
5 0.0 0.0

选择行动

def choose_action(state, q_table):
    state_actions = q_table.iloc[state, :]
    if (np.random.uniform() > EPSILON) or (state_actions.all() == 0):
        action_name = np.random.choice(ACTIONS)
    else:
        action_name = state_actions.argmax()
    return action_name

环境搭建

def get_env_feedback(S, A):
    if A == 'right':
        if S == N_STATES - 2:
            S_ = 'terminal'
            R = 1
        else:
            S_ = S + 1
            R = 0
    else:
        R = 0
        if S == 0:
            S_ = S
        else:
            S_ = S - 1
    return S_, R

更新环境

def update_env(S, episode, step_counter):
    env_list = ['-']*(N_STATES-1) + ['T']
    if S == 'terminal':
        interaction = 'Episode %s: total_steps = %s' % (episode+1, step_counter)
        print('\r{}'.format(interaction), end='')
        time.sleep(2)
        print('\r                                    ',end='')
    else:
        env_list[S] = 'o'
        interaction = ''.join(env_list)
        print('\r{}'.format(interaction), end='')
        time.sleep(FRESH_TIME)

RL过程

def rl():
    q_table = build_Q_tabel(N_STATES, ACTIONS)
    for episode in range(MAX_EPISODES):
        step_counter = 0
        S = 0
        is_terminated = False
        update_env(S, episode, step_counter)
        while not is_terminated:
            A = choose_action(S, q_table)
            S_, R = get_env_feedback(S, A)
            q_predict = q_table.loc[S, A]
            if S_ != 'terminal':
                q_target = R + LAMBDA * q_table.iloc[S_, :].max()
            else:
                q_target = R
                is_terminated = True

            q_table.loc[S, A] += ALPHA * (q_target - q_predict)
            S = S_

            update_env(S, episode, step_counter+1)
            step_counter += 1
    return q_table     

测试

rl()
left right
0 0.000002 0.005031
1 0.000001 0.027061
2 0.000007 0.111953
3 0.000204 0.343331
4 0.000810 0.745813
5 0.000000 0.000000

代码来自莫烦python

你可能感兴趣的:(强化学习实例)