- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- 【论文阅读】实时全能分割模型
万里守约
论文阅读论文阅读图像分割图像处理计算机视觉
文章目录导言1、论文简介2、论文主要方法3、论文针对的问题4、论文创新点总结导言在最近的计算机视觉领域,针对实时多任务分割的需求日益增长,特别是在交互式分割、全景分割和视频实例分割等多种应用场景中。为了解决这些挑战,本文介绍了一种新方法——RMP-SAM(Real-TimeMulti-PurposeSegmentAnything),旨在实现实时的多功能分割。RMP-SAM结合了动态卷积与高效的模型
- 论文阅读:2023 arxiv Multiscale Positive-Unlabeled Detection of AI-Generated Texts
CSPhD-winston-杨帆
论文阅读论文阅读人工智能
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328MultiscalePositive-UnlabeledDetectionofAI-GeneratedTextshttps://arxiv.org/abs/2305.18149https://www.doubao.com/chat/211427064915225
- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- Description of a Poisson Imagery Super Resolution Algorithm 论文阅读
青铜锁00
论文阅读Radar论文阅读
DescriptionofaPoissonImagerySuperResolutionAlgorithm1.研究目标与意义1.1研究目标1.2实际意义2.创新方法与模型2.1核心思路2.2关键公式与推导2.2.1贝叶斯框架与概率模型2.2.2MAP估计的优化目标2.2.3超分辨率参数α2.3对比传统方法的优势3.实验验证与结果3.1实验设计3.2关键结果4.未来研究方向(实波束雷达领域)4.1挑战
- CBNetV2: A Composite Backbone Network Architecture for Object Detection论文阅读
Laughing-q
论文阅读深度学习人工智能目标检测实例分割transformer
CBNetV2:ACompositeBackboneNetworkArchitectureforObjectDetection论文阅读介绍方法CBNetV2融合方式对Assistant的监督实验与SOTA的比较在主流backbone架构上的通用性与更宽更深的网络比较与可变形卷积的兼容在主流检测器上的模型适用性在SwinTransformer上的模型适用性消融实验paper:https://arxi
- 【论文阅读】PERSONALIZE SEGMENT ANYTHING MODEL WITH ONE SHOT
s1ckrain
计算机视觉论文阅读计算机视觉人工智能
PERSONALIZESEGMENTANYTHINGMODELWITHONESHOT原文摘要研究背景与问题:SAM是一个基于大规模数据预训练的强大提示框架,推动了分割领域的发展。尽管SAM具有通用性,但在无需人工提示的情况下,针对特定视觉概念(如自动分割用户宠物狗)的定制化研究尚不充分。方法提出:提出了一种无需训练的SAM个性化方法,称为PerSAM。仅需单次数据(一张带参考掩码的图像),即可在新
- GS-SLAM论文阅读笔记-MGSO
zenpluck
GS论文阅读论文阅读笔记
前言MGSO首字母缩略词是直接稀疏里程计(DSO),我们建立的光度SLAM系统和高斯飞溅(GS)的混合。这应该是第一个前端用DSO的高斯SLAM,不知道这个系统的组合能不能打得过ORB-SLAM3,以及对DSO会做出怎么样的改进以适应高斯地图,接下来就看一下吧!GishelloG^s_ihelloGishello我是红色文章目录前言1.背景介绍2.关键内容2.1SLAMmodule2.2Dense
- 【论文阅读】MMedPO: 用临床感知多模态偏好优化调整医学视觉语言模型
勤奋的小笼包
论文阅读语言模型人工智能自然语言处理chatgpt
MMedPO:用临床感知多模态偏好优化调整医学视觉语言模型1.背景2.核心问题:3.方法:3.实验结果与优势4.技术贡献与意义5.结论MMedPO:AligningMedicalVision-LanguageModelswithClinical-AwareMultimodalPreferenceOptimizationMMedPO:用临床感知多模态偏好优化调整医学视觉语言模型gitgub:地址1.
- 论文阅读:Deep Stacked Hierarchical Multi-patch Network for Image Deblurring
行走的歌
文献阅读图像处理计算机视觉机器学习深度学习图像去雨图像处理
这是一篇去模糊的文章,后来发现直接套用不合适,无法获取到相应的特征,遂作罢,简单记录一下。2019CVPR:DMPHN这篇文章是2019CVPR的一篇去模糊方向的文章,师兄分享的时候看了一下,后来也发现这个网络结构在很多workshop以及文章中都见过。文章:ArXiv代码:Github在去模糊领域,目前的多尺度和尺度循环模型存在一些问题:1)由粗到细方案中的去卷积/上采样操作导致运行时间昂贵;2
- 【论文阅读方法】沐神课程:如何读论文
晴空对晚照
论文阅读论文阅读
一篇论文的一般结构titleabstractintroductionmethodexperienceconclusion三明治论文阅读法第一遍:海选title+abstract+conclusion——确定要不要读第二遍:精读对整个文章过一遍,知道每一块在做什么可以从标题开始读到最后,注意不用咬文嚼字,不要太细节,公式、证明等很细节的部分可以忽略掉重点弄清楚每一个图表,算法在做什么,x轴y轴每一个
- 论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习语言模型
QLoRA论文4-bit标准浮点数量化常见的量化技术是最大绝对值量化:XInt8=round(127absmax(XFP32)XFP32)=round(cFP32,XFP32)式(1)X^{Int8}=round(\frac{127}{absmax(X^{FP32})}X^{FP32})=round(c^{FP32},X^{FP32})\qquad\qquad\text{式(1)}XInt8=ro
- 论文阅读:Personalized Purchase Prediction of Market with Wasserstein-Based Sequence Matching
Narcissus`小暮
一步步来学大数据推荐系统
PersonalizedPurchasePredictionofMarketwithWasserstein-BasedSequenceMatching概述问题背景及陈述预测算法步骤一:itemembeddings步骤二:计算wassersteinDistance步骤三:Wasserstein-BasedDynamicTimeWarping预测实验评价标准数据集对比的baseline结论市场篮子的应
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- 论文阅读 EEG-TCNet
Plan-C-
论文阅读
EEG-TCNet:AnAccurateTemporalConvolutionalNetworkforEmbeddedMotor-ImageryBrain–MachineInterfaces1.Intrduction本文提出了一种新颖的时间卷积网络(TCN),在需要很少的可训练参数的情况下实现了出色的精度。EG-TCNET成功地推广了单个数据集,通过0.25的元效应优于MOABB的当前最新技术水平
- 论文阅读《Semantic Stereo Matching with Pyramid Cost Volumes》
cunese0088
深度学习
SSPCV-Net(语义立体匹配网络)目的:进一步捕捉视差的细节主要模块:数据集:SceneFlow,KITTI2012,KITTI2015,Cityscape(比较泛化能力)-------------------------------------------------------------------------------------------------------Concatevo
- 论文阅读笔记——π0: A Vision-Language-Action Flow Model for General Robot Control
寻丶幽风
论文阅读笔记论文阅读笔记人工智能机器人语言模型
π0论文π0π_0π0是基于预训练的VLM模型增加了actionexpert,并结合了flowmatching方法训练的自回归模型,能够直接输出模型的actionchunk(50)。π0采用FlowMatching技术来建模连续动作的分布,这一创新使模型能够精确控制高频率的灵巧操作任务,同时具备处理多模态数据的能力。架构受到Transfusion的启发:通过单一Transformer处理多目标任务
- 【论文阅读】Learning Transferable Visual Models From Natural Language Supervision(2021)
Bosenya12
论文阅读
摘要State-of-the-art(最先进的)computervisionsystems(计算机视觉系统)aretrainedtopredictafixedsetofpredeterminedobjectcategories(被训练来预测一组固定的预定对象类别).Thisrestrictedformofsupervision(受限制的监督形式)limitstheirgenerality(通用性)
- InternVL:论文阅读 -- 多模态大模型(视觉语言模型)
XiaoJ1234567
LLM论文阅读语言模型人工智能多模态大模型internVL
更多内容:XiaoJ的知识星球文章目录InternVL:扩展视觉基础模型与通用视觉语言任务对齐1.概述2.InternVL整体架构1)大型视觉编码器:InternViT-6B2)语言中间件:QLLaMA。3)训练策略(1)第一阶段:视觉-语言对比训练(2)第二阶段:视觉语言生成训练(3)第三阶段:监督微调(SFT)3.InternVL应用1)对于视觉感知任务2)对于对比任务3)对于生成任务4)对于
- 论文阅读-秦汉时期北方边疆组织的空间互动模式与直道的定位(中国)
MilkLeong
论文阅读空间计算
论文英文题目:AspatialinteractionmodelofQin-HanDynastyorganisationonthenorthernfrontierandthelocationoftheZhidaohighway(China)发表于:journalofarchaeologicalscience,影响因子:3.030论文主要是使用空间互动模型来对秦汉时期的北方边疆直道进行定位和重建。分析
- 论文阅读笔记——Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习机器人
ALOHA论文ALOHA解决了策略中的错误可能随时间累积,且人类演示可能是非平稳的,提出了ACT(ActionChunkingwithTransformers)方法。ActionChunking模仿学习中,compoundingerror是致使任务失败的主要原因。具体来说,当智能体(agent)在测试时遇到训练集中未见过的情况时,可能会产生预测误差。这些误差会逐步累积,导致智能体进入未知状态,最终
- 【论文阅读】LayoutPrompter: Awaken the Design Ability of Large Language Models
进击的乔洋
论文阅读语言模型人工智能
LayoutPrompter:AwakentheDesignAbilityofLargeLanguageModelsabstract条件图形布局生成是一种自动将用户约束映射为高质量布局的技术,目前受到了广泛关注。尽管最近的工作取得了很好的性能,但缺乏通用性和数据效率阻碍了它们的实际应用。本文提出Layout-Prompter,利用大型语言模型(llm)通过上下文学习来解决上述问题。LayoutPr
- 论文阅读方法
某风吾起
work哲学与人生论文阅读
文章目录步骤一:对论文进行自我判断阅读题目和关键词。阅读摘要阅读总结要点步骤二:阅读文章阅读图表和图表的注释阅读引言阅读实验部分阅读结果和作者对结果的讨论(创新点)要点步骤三:精度论文回答问题1回答问题2回答问题3要点步骤一:对论文进行自我判断阅读题目和关键词。观察这些关键词是否与你的研究的内容有关。如果不相干,可以随时停止,换篇文章看。阅读摘要摘要一般包含了整篇文章的主要内容,是非常非常重要的部
- 论文阅读:Recipe for a General, Powerful, Scalable Graph Transformer
不会&编程
图神经网络论文阅读论文阅读transformer深度学习图神经网络人工智能
RecipeforaGeneral,Powerful,ScalableGraphTransformer论文和代码地址1介绍与贡献2GPS模型2.1模型框架图2.2PE和SE2.3GPSlayer:一种MPNN+Transformer的混合模型GraphTransformer)论文和代码地址论文地址:https://arxiv.org/pdf/2205.12454v4代码地址:https://git
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- Angular Superresolution of Real Aperture Radar for Target Scale Measurement 论文阅读
青铜锁00
论文阅读Radar论文阅读
AngularSuperresolutionofRealApertureRadarforTargetScaleMeasurement1.研究目标与实际意义1.1研究目标1.2实际意义2.创新方法与模型设计2.1广义混合正则化(GHR)框架核心公式与传统方法对比2.2自适应迭代重加权(AIR)求解器算法设计复杂度分析3.实验设计与结果验证3.1仿真实验实验设置关键结果3.2实际数据验证4.未来研究方
- Angular Superresolution of Real Aperture Radar Using Online Detect-Before-Reconstruct Framework 论文阅读
青铜锁00
论文阅读Radar论文阅读
AngularSuperresolutionofRealApertureRadarUsingOnlineDetect-Before-ReconstructFramework1.论文的研究目标与实际问题意义1.1研究目标1.2实际问题与产业意义2.论文的创新方法、模型与公式分析(重点)2.1核心创新点2.2关键公式与模型2.2.1信号模型2.2.2稀疏正则化优化问题2.2.3坐标循环最小化2.2.4
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- [论文阅读]DAMO-YOLO——实时目标检测设计报告
一朵小红花HH
知识蒸馏目标检测YOLO目标检测目标跟踪论文阅读人工智能
DAMO-YOLODAMO-YOLO:AReportonReal-TimeObjectDetectionDesign实时目标检测设计报告论文网址:DAMO-YOLO简读论文这篇论文介绍了一个名为DAMO-YOLO的新型目标检测方法,相比YOLO系列的其他方法有着更好的性能。该方法的优势来自于几项新技术:使用了MAE-NAS作为骨干网络,可以自动搜索出不同延迟预算下的优化网络结构。MAE-NAS被称
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&