- PyTorch学习笔记之基础函数篇(四)
熊猫Devin
深度学习之PyTorchpytorch学习笔记
文章目录2.8torch.logspace函数讲解2.9torch.ones函数2.10torch.rand函数2.11torch.randn函数2.12torch.zeros函数2.8torch.logspace函数讲解torch.logspace函数在PyTorch中用于生成一个在对数尺度上均匀分布的张量(tensor)。这意味着张量中的元素是按照对数间隔排列的,而不是线性间隔。这对于创建在数
- pytorch学习笔记(2)--Tensor
ToToBe
pytorch笔记1024程序员节
系列文章pytorch学习笔记(1)–QUICKSTARTpytorch学习笔记(2)–Tensorpytorch学习笔记(3)–数据集与数据导入pytorch学习笔记(4)–创建模型(BuildModel)pytorch学习笔记(5)–Autograd文章目录系列文章Tensor(张量)1.初始化张量2.张量的属性3.张量的操作1.类似numpy的索引和切片2.拼接3.算数操作4.单元素张量5.
- PyTorch学习笔记(三):softmax回归
FriendshipT
PyTorch学习笔记pytorch回归深度学习softmax
PyTorch学习笔记(三):softmax回归softmax回归分类问题softmax回归模型单样本分类的矢量计算表达式小批量样本分类的矢量计算表达式交叉熵损失函数模型预测及评价小结Torchvision获取数据集读取小批量PyTorch从零开始实现softmax获取和读取数据初始化模型参数实现softmax运算定义模型定义损失函数定义优化算法计算分类准确率训练模型预测小结PyTorch模块实现
- PyTorch学习笔记1
zt_d918
训练过程importtorch#batch_size,input_dimension,hidden_dimension,output_dimensionN,D_in,H,D_out=64,1000,100,10#模拟一个训练集x=torch.randn(N,D_in)y=torch.randn(N,D_out)#模型定义有多种方式,这里不提model#loss函数定义loss_fn=torch.n
- 小土堆pytorch学习笔记004
柠檬不萌只是酸i
深度学习pytorch学习笔记机器学习深度学习
目录1、神经网络的基本骨架-nn.Module的使用2、卷积操作实例3、神经网络-卷积层4、神经网络-最大池化的使用(1)最大池化画图理解:(2)代码实现:5、神经网络-非线性激活(1)代码实现(调用sigmoid函数)6、神经网络-线性层(1)代码7、网络搭建-小实战(1)完整代码1、神经网络的基本骨架-nn.Module的使用官网地址:pytorch里的nnimporttorchfromtor
- 小土堆pytorch学习笔记003 | 下载数据集dataset 及报错处理
柠檬不萌只是酸i
深度学习人工智能深度学习机器学习pytorchpython
目录1、下载数据集2、展示数据集里面的内容3、DataLoader的使用例子:结果展示:1、下载数据集#数据集importtorchvisiontrain_set=torchvision.datasets.CIFAR10(root="./test10_dataset",train=True,download=True)test_set=torchvision.datasets.CIFAR10(ro
- 小土堆pytorch学习笔记005 | 完结,✿✿ヽ(°▽°)ノ✿
柠檬不萌只是酸i
深度学习学习笔记pytorch机器学习深度学习
目录1、损失函数与反向传播2、如何在搭建的网络中使用损失函数呢?3、优化器4、现有网络模型的使用及修改例子:5、模型训练保存+读取(1)保存(2)读取6、完整的模型训练:(1)代码【model文件】:【主文件】:(2)运行截图:(3)绘图展示:(4)添加训练正确率的完整代码:(5)总结!!!:(6)使用GPU训练7、完整模型验证(1)代码(2)运行结果1、损失函数与反向传播①计算实际输出和目标之间
- 小土堆pytorch学习笔记002
柠檬不萌只是酸i
深度学习pytorch学习笔记
目录1、TensorBoard的使用(1)显示坐标:(2)显示图片:2、Transform的使用3、常见的Transforms(1)#ToTensor()(2)#Normalize()(3)#Resize()(4)#Compose()4、总结:1、TensorBoard的使用(1)显示坐标:fromtorch.utils.tensorboardimportSummaryWriterimportnu
- 【pytorch】pytorch学习笔记(续2)
小白冲鸭
pytorch学习笔记
p30:1.均方差(MeanSquaredError,MSE):(1)注意区分MSE和L2范数:L2范数要开根号,而MSE不需要开根号。用torch.norm函数求MSE的时候不要忘记加上pow(2)。求导:pytorch实现自动求导:第一种方法:torch.autograd.grad()设置w需要求导有两种方法:(1)在创建w之后,用来设置w需要求导。(2)在创建w的时候,用w=torch.te
- 【pytorch】pytorch学习笔记(续1)
小白冲鸭
pytorch学习笔记
p22:1.加减乘除:(1)add(a,b):等同于a+b。(2)sub(a,b):等同于a-b。(3)mul(a,b):等同于a*b。(4)div(a,b):等同于a/b。a//b表示整除。2.tensor的矩阵式相乘:matmul注意区分:(1)*:表示相同位置的元素相乘;(2).matmul:表示矩阵相乘。对于(2)矩阵的相乘,有三种方式:(1)torch.mm:只适用于二维的tensor,
- 【pytorch】pytorch学习笔记
小白冲鸭
pytorch学习笔记
(实践)p5:线性回归问题中损失函数为什么要使用均方误差?均方误差:即误差的平方和的平均数。p8:1.pytorch不是一个完备的语言库,而是一个对于数据的gpu加速库,所以其没有对string的内键支持,即pytorch的基本类型中不包含string。2.pytorch表示string的方法:(1)onehotencoding问题:1)两个单词之间的相关性并没有在onehot编码中得到体现;2)
- 【pytorch】pytorch学习笔记(续3)
小白冲鸭
pytorch学习笔记
p41:1.LeakReLU,SELU,softplus2.GPU加速:.to方法p42:不太懂p43:1.visdom,tensorbroadXp44:p45:1.如何检测过拟合?在train上表现很好,而在test上表现不好。test的目的(没有valset的时候):防止过拟合,选取最优参数。相当于是验证集。一般选取testaccuracy最高的那点停止训练,作为最优参数。p46:1.trai
- 小土堆pytorch学习笔记001
柠檬不萌只是酸i
深度学习pytorch学习笔记
1、Pytorch环境的配置与安装。(1)建议安装:Anaconda(2)检查显卡:GPU(3)管理环境(不同版本的pytorch版本不同):condacreate-npytorchpython=3.6(4)检测自己的电脑是否可以使用:2、pytorch编辑器的选择(1)pycharm(下载社区版)(2)jupyter(可以交互)启动本地的jupyter:3、为什么torch.cuda.is_av
- Pytorch学习笔记(2) Autograd(自动求导) —— PyTorch的核心
银色尘埃010
本文是Pytorch快速入门第二部分,主要学习记录,主要翻译PytorchAutograd部分教程原文autograd包是PyTorch中神经网络的核心部分。torch.autograd提供了类和函数,用来对任意标量函数进行求导。要想使用自动求导,只需要对已有的代码进行微小的改变。只需要将所有的tensor包含进Variable对象中即可。一、Tensor(张量)torch.Tensor是程序包的
- pytorch学习笔记(十)
満湫
学习笔记
一、损失函数举个例子比如说根据Loss提供的信息知道,解答题太弱了,需要多训练训练这个模块。Loss作用:1.算实际输出和目标之间的差距2.为我们更新输出提供一定的依据(反向传播)看官方文档每个输入输出相减取平均取绝对值再取平均第一个损失函数:L1Loss(差的绝对值取平均)需要注意输入输出N=batch_size你有多少个数据第一个损失函数:MSELoss(平方差误差,平方取平均)稳妥的写法是先
- pytorch学习笔记(八)
満湫
pytorch学习笔记
Sequential看看搭建了这个能不能更容易管理,CIFAR-10数据集进行看一下网络模型CIFAR-10模型123456789输入进过一次卷积,然后经过一次最大池化,尺寸变成16*16了,在经过一次卷积尺寸没变,紧接着进过了一次最大池化,变成了8*8,再经过一次卷积通道数改变32→64,再经过一次池化变成4*4,然后展平,最后输出。(1-2)根据图里面看,32×32经过卷积后的尺寸仍然是32×
- pytorch学习笔记(十一)
満湫
pytorch学习笔记
优化器学习把搭建好的模型拿来训练,得到最优的参数。importtorch.optimimporttorchvisionfromtorchimportnnfromtorch.nnimportSequential,Conv2d,MaxPool2d,Flatten,Linearfromtorch.utils.dataimportDataLoaderdataset=torchvision.datasets
- pytorch学习笔记(五)
満湫
学习笔记
关注不同的方法输入是什么类型,输出是什么类型。1.Compose主要关注初始化函数从作用内置call的调用方法两种,第一种,直接使用对象,不用使用点,直接调用的是__call__当要调用的时候直接写个Person()按住ctrl+P看看需要填啥参数。2.Totensor的使用输出结果如下3.Normalize归一化输入必须要tensor的均值,标准差,然后看图片的维度计算4.Resize给定的是一
- pytorch学习笔记
満湫
pytorch学习人工智能
torchvision处理图像的pytorch官网上看数据集的包,COCO数据集目标检测、语义分割,cifar物体识别预训练好的模型这个模块是图片的处理root-位置,train-创建的true是个训练集,transform前面是输出图片的数据类型,“3”是targetimporttorchvisionfromtorch.utils.tensorboardimportSummaryWriterda
- pytorch学习笔记(七 )
満湫
pytorch学习笔记
池化类似压缩最大池化-上采样例如给一个3的话就会生成一个3×3的窗口(生成相同的高和宽),给一个tuple就会给出一个相同的池化核。stride默认值就是核的大小dilation在卷积dialation设置之后每一个会和另外的差一个,空洞卷积ceilfloor模式(天花板、地板)floor就是向下取整。按下面的方法走,走的步数默认为核的大小取9个里面的最大值,走到右一图,这种情况只能覆盖6个,其他
- pytorch学习笔记(一)
乌拉圭没有壳
1、今天在学习60分钟pytorchtutorial中2、zip就是把2个数组糅在一起x=[1,2,3,4,5]y=[6,7,8,9,10]zip(x,y)[(1,6),(2,7),(3,8),(4,9),(5,10)]还可以方便建立字典。x=['bob','tom','kitty']>>>y=[80,90,95]>>>d=dict(zip(x,y))[('bob',80),('tom',90),
- Pytorch学习笔记 | GAN生成对抗网络 | 代码 | 生成mnist手写数字图片
惊鸿若梦一书生
Python深度学习pytorch学习笔记
文章目录GAN网络简介测试判别器和测试生成器测试判别器测试生成器首次生成图片(效果欠佳)生成图片(比较清晰,但还有差距)生成图片(继续优化,输入扩维)生成图片(继续优化,)GAN网络简介生成对抗网络(GAN,GenerativeAdversarialNetworks)是一种深度学习模型,由IanGoodfellow和他的同事在2014年首次提出。GAN是一种非常强大和独特的神经网络架构,用于生成新
- 『PyTorch学习笔记』分布式深度学习训练中的数据并行(DP/DDP) VS 模型并行
AI新视界
Pytorch学习笔记pytorch数据并行模型并行DataParallel
分布式深度学习训练中的数据并行(DP/DDP)VS模型并行文章目录一.介绍二.并行数据加载2.1.加载数据步骤2.2.PyTorch1.0中的数据加载器(Dataloader)三.数据并行3.1.DP(DataParallel)的基本原理3.1.1.从流程上理解3.1.2.从模式角度理解3.1.3.从操作系统角度看3.1.4.低效率3.2.DDP(DistributedDataParallel)的
- Pytorch学习笔记——autograd
岳野
学习笔记python机器学习深度学习
一、神经网络神经网络就是一个”万能的模型+误差修正函数“,每次根据训练得到的结果与预想结果进行误差分析,进而修改权值和阈值,一步一步得到能输出和预想结果一致的模型。机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定一些样本点,用合适的曲线揭示这些样本点随着自变量的变化关系。深度学习同样也是为了这个目的,只不过此时,样本点不再限定为(x,y)点对,而可以是由向量、矩
- PyTorch学习笔记
欢桑
pytorch学习深度学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录学习目标学习内容:一pytorch深度学习方法二构建一个简单神经网络三深度学习工作流和pytorch生态系统四基于pytorch构建CNN五RNN以及序列数据处理六生成对抗网络七强化学习八将pytorch用用于生产三种不同的方法总结学习目标4月份到来之前学完《PorTorch深度学习实战》学习内容:一pytorch深度学习方法
- Pytorch学习笔记(4)—LSTM序列生成模型
llddycidy
Pytorch学习笔记pytorch学习笔记
文章目录前言主要内容一、序列生成问题解决方法二、RNN的引入三、LongShortTermMemory(LSTM)4、序列生成音乐本文引用:前言掌握使用PyTorch构建LSTM模型的方法掌握使用LSTM生成MIDI音乐的方法主要内容如何用神经网络做序列生成?RNN与LSTM的工作原理RNN是如何记忆Pattern的?MIDI音乐的原理如何用LSTM作曲一、序列生成问题解决方法将生成问题转化成一个
- PyTorch学习笔记(二)——TensorBoard
routine1o1oo
pytorch
1用途1、训练过程中loss是如何变化的,是否正常或是否按预想的变化,选择什么样的模型2、模型在不同阶段的输出2需要导入的类和常用的方法fromtorch.utils.tensorboardimportSummaryWriterwriter.add_image()writer.add_scalar()查看SummaryWriter的官方文档直接向log_dir文件夹写入事件文件,可以被Tensor
- 【pytorch学习笔记03】pytorch完整模型训练套路
yierrrrr
DL学习笔记pytorch学习笔记
B站我是土堆视频学习笔记,链接:https://www.bilibili.com/video/BV1hE411t7RN/?spm_id_from=333.999.0.01.准备数据集train_data=torchvision.datasets.CIFAR10(root='./dataset',train=True,transform=torchvision.transforms.ToTensor
- PyTorch学习笔记
Junoxiang
pytorch学习笔记
1.item()→number方法:item()返回一个数只能用于只包含一个元素的张量。对于其他的张量,请查看方法tolist().该操作是不可微分的,即不可求导.(译者注:返回的结果是普通Python数据类型,自然不能调用backward()方法来进行梯度的反向传播)Example:例子:>>>x=torch.tensor([1.0])>>>x.item()1.02.Tensor(张量)中包含d
- PyTorch学习笔记(4)--神经网络模型的保存和导入
别管我啦就是说
Pytorch学习笔记pythonpytorch
1.numpy矩阵的保存importnumpyasnpa=np.array(2)np.save("nm.npy",a)a=np.load("nm.npy")2.模型的保存和导入将训练好的模型和参数保存下来,下一次使用的时候直接导入模型和参数,和一个已经训练好的神经网络模型一样保存模型importtorch#保存整个神经网络的结构和模型参数torch.save(mymodel,'mymodel.pk
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?