图像处理的交并比(IoU)

交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。

图像处理的交并比(IoU)_第1张图片

计算公式:

这里写图片描述

Python实现代码:

def calculateIoU(candidateBound, groundTruthBound):
    cx1 = candidateBound[0]
    cy1 = candidateBound[1]
    cx2 = candidateBound[2]
    cy2 = candidateBound[3]

    gx1 = groundTruthBound[0]
    gy1 = groundTruthBound[1]
    gx2 = groundTruthBound[2]
    gy2 = groundTruthBound[3]

    carea = (cx2 - cx1) * (cy2 - cy1) #C的面积
    garea = (gx2 - gx1) * (gy2 - gy1) #G的面积

    x1 = max(cx1, gx1)
    y1 = max(cy1, gy1)
    x2 = min(cx2, gx2)
    y2 = min(cy2, gy2)
    w = max(0, x2 - x1)
    h = max(0, y2 - y1)
    area = w * h #C∩G的面积

    iou = area / (carea + garea - area)

    return iou

你可能感兴趣的:(图像处理)