#注释全部写在了代码中哦,注意仔细看
#主程序,sequence_gan.py
import numpy as np
import tensorflow as tf
import random
from dataloader import Gen_Data_loader, Dis_dataloader
from generator import Generator
from discriminator import Discriminator
from rollout import ROLLOUT
from target_lstm import TARGET_LSTM
from dataloader import StrToBytes
import pickle
import pdb
#########################################################################################
# Generator Hyper-parameters
######################################################################################
EMB_DIM = 32 # embedding dimension
HIDDEN_DIM = 32 # hidden state dimension of lstm cell
SEQ_LENGTH = 20 # sequence length
START_TOKEN = 0
PRE_EPOCH_NUM = 10 # supervise (maximum likelihood estimation) epochs 120
SEED = 88
BATCH_SIZE = 64
#########################################################################################
# Discriminator Hyper-parameters
#########################################################################################
dis_embedding_dim = 64
dis_filter_sizes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20]
dis_num_filters = [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160]
dis_dropout_keep_prob = 0.75
dis_l2_reg_lambda = 0.2
dis_batch_size = 64
#########################################################################################
# Basic Training Parameters
#########################################################################################
TOTAL_BATCH = 10#200
positive_file = 'save/real_data.txt' #通过oracle模型生成真实数据,保存在这个文件
negative_file = 'save/generator_sample.txt' #生成器生成的假数据保存在这个文件
eval_file = 'save/eval_file.txt' #验证集文件
generated_num = 1000#10000 #产生generated_num个样本
#通过trainable_model模型产生int(generated_num/batch_size)*batch_size多个样本,并保存在output_file文件
def generate_samples(sess, trainable_model, batch_size, generated_num, output_file):
# Generate Samples
generated_samples = []
for _ in range(int(generated_num / batch_size)):
generated_samples.extend(trainable_model.generate(sess))
with open(output_file, 'w') as fout:
for poem in generated_samples:
buffer = ' '.join([str(x) for x in poem]) + '\n'
fout.write(buffer)
def target_loss(sess, target_lstm, data_loader):
# target_loss means the oracle negative log-likelihood tested with the oracle model "target_lstm"
# For more details, please see the Section 4 in https://arxiv.org/abs/1609.05473
nll = []
data_loader.reset_pointer()
for it in range(data_loader.num_batch):
batch = data_loader.next_batch()
g_loss = sess.run(target_lstm.pretrain_loss, {target_lstm.x: batch})
nll.append(g_loss)
return np.mean(nll)
def pre_train_epoch(sess, trainable_model, data_loader):
# Pre-train the generator using MLE for one epoch
supervised_g_losses = []
data_loader.reset_pointer()
for it in range(data_loader.num_batch):
batch = data_loader.next_batch()
_, g_loss = trainable_model.pretrain_step(sess, batch)
supervised_g_losses.append(g_loss)
return np.mean(supervised_g_losses)
def main():
#使得随机数据可预测,即只要seed的值一样,后续生成的随机数都一样。
random.seed(SEED)
np.random.seed(SEED)
#刚开始没有数据,因此从状态0开始,生成到状态19,产生20个数字为一个样本
assert START_TOKEN == 0
#先创建对象
gen_data_loader = Gen_Data_loader(BATCH_SIZE)
likelihood_data_loader = Gen_Data_loader(BATCH_SIZE) # For testing
vocab_size = 5000
dis_data_loader = Dis_dataloader(BATCH_SIZE)
generator = Generator(vocab_size, BATCH_SIZE, EMB_DIM, HIDDEN_DIM, SEQ_LENGTH, START_TOKEN)
# target_params = pickle.load(open(StrToBytes('save/target_params.pkl')))
target_params = pickle.load(open('save/target_params.pkl', 'rb'), encoding='iso-8859-1')
target_lstm = TARGET_LSTM(vocab_size, BATCH_SIZE, EMB_DIM, HIDDEN_DIM, SEQ_LENGTH, START_TOKEN, target_params) # The oracle model
discriminator = Discriminator(sequence_length=20, num_classes=2, vocab_size=vocab_size, embedding_size=dis_embedding_dim,
filter_sizes=dis_filter_sizes, num_filters=dis_num_filters, l2_reg_lambda=dis_l2_reg_lambda)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
#--------------------------------mycode-------------------------------#
merged = tf.summary.merge_all() # 将图形、训练过程等数据合并在一起
writer = tf.summary.FileWriter('logs', sess.graph) # 将训练日志写入到logs文件夹下
# First, use the oracle model to provide the positive examples, which are sampled from the oracle data distribution
generate_samples(sess, target_lstm, BATCH_SIZE, generated_num, positive_file)
#pdb.set_trace()
gen_data_loader.create_batches(positive_file)
log = open('save/experiment-log.txt', 'w')
#--------- pre-train generator预训练生成器--------------------#
print("Start pre-training...")
log.write('pre-training...\n')
for epoch in range(PRE_EPOCH_NUM):#120
loss = pre_train_epoch(sess, generator, gen_data_loader)
if epoch % 5 == 0:
generate_samples(sess, generator, BATCH_SIZE, generated_num, eval_file)
likelihood_data_loader.create_batches(eval_file)
test_loss = target_loss(sess, target_lstm, likelihood_data_loader)
print ("pre-train epoch ", epoch, "test_loss ", test_loss)
buffer = 'epoch:\t'+ str(epoch) + '\tnll:\t' + str(test_loss) + '\n'
log.write(buffer)
print("Start pre-training discriminator...")
# Train 3 epoch on the generated data and do this for 50 times
for _ in range(10):
generate_samples(sess, generator, BATCH_SIZE, generated_num, negative_file)
#pdb.set_trace()
dis_data_loader.load_train_data(positive_file, negative_file)
for _ in range(3):
dis_data_loader.reset_pointer()
for it in range(dis_data_loader.num_batch):
x_batch, y_batch = dis_data_loader.next_batch()
feed = {
discriminator.input_x: x_batch,
discriminator.input_y: y_batch,
discriminator.dropout_keep_prob: dis_dropout_keep_prob
}
_ = sess.run(discriminator.train_op, feed)
#pdb.set_trace()
rollout = ROLLOUT(generator, 0.8)
print ("#########################################################################")
print ("Start Adversarial Training...")
log.write('adversarial training...\n')
for total_batch in range(TOTAL_BATCH):
# Train the generator for one step
for it in range(1):
samples = generator.generate(sess)
rewards = rollout.get_reward(sess, samples, 16, discriminator)
feed = {generator.x: samples, generator.rewards: rewards}
_ = sess.run(generator.g_updates, feed_dict=feed)
# Test
if total_batch % 5 == 0 or total_batch == TOTAL_BATCH - 1:
generate_samples(sess, generator, BATCH_SIZE, generated_num, eval_file)
likelihood_data_loader.create_batches(eval_file)
test_loss = target_loss(sess, target_lstm, likelihood_data_loader)
buffer = 'epoch:\t' + str(total_batch) + '\tnll:\t' + str(test_loss) + '\n'
print ("total_batch: ", total_batch, "test_loss: ", test_loss)
log.write(buffer)
# Update roll-out parameters
rollout.update_params()
# Train the discriminator
for _ in range(5):
generate_samples(sess, generator, BATCH_SIZE, generated_num, negative_file)
dis_data_loader.load_train_data(positive_file, negative_file)
for _ in range(3):
dis_data_loader.reset_pointer()
for it in range(dis_data_loader.num_batch):
x_batch, y_batch = dis_data_loader.next_batch()
feed = {
discriminator.input_x: x_batch,
discriminator.input_y: y_batch,
discriminator.dropout_keep_prob: dis_dropout_keep_prob
}
_ = sess.run(discriminator.train_op, feed)
log.close()
if __name__ == '__main__':
main()
#dataloader.py
import numpy as np
import pdb
class StrToBytes:
def __init__(self, fileobj):
self.fileobj = fileobj
def read(self, size):
return self.fileobj.read(size).encode()
def readline(self, size=-1):
return self.fileobj.readline(size).encode()
class Gen_Data_loader():
def __init__(self, batch_size):
self.batch_size = batch_size
self.token_stream = []
def create_batches(self, data_file):
self.token_stream = []
with open(data_file, 'r') as f:
for line in f:
line = line.strip() # 去除首尾空格
line = line.split() #通过指定分隔符对字符串进行切片,默认为空格、换行(\n)、制表符(\t)等。
parse_line = [int(x) for x in line]
if len(parse_line) == 20:
self.token_stream.append(parse_line)
self.num_batch = int(len(self.token_stream) / self.batch_size)
self.token_stream = self.token_stream[:self.num_batch * self.batch_size]
#self.sequence_batch通过索引可得到每个批次
self.sequence_batch = np.split(np.array(self.token_stream), self.num_batch, 0)
#self.pointer指向每个批次的行首,用来作为self.sequence_batch的索引
self.pointer = 0
def next_batch(self):
ret = self.sequence_batch[self.pointer]
self.pointer = (self.pointer + 1) % self.num_batch
return ret
def reset_pointer(self):
self.pointer = 0
#判别器的数据提取
class Dis_dataloader():
def __init__(self, batch_size):
self.batch_size = batch_size
self.sentences = np.array([])
self.labels = np.array([])
def load_train_data(self, positive_file, negative_file):
# Load data
positive_examples = []
negative_examples = []
with open(positive_file)as fin:
for line in fin:
line = line.strip()
line = line.split()
parse_line = [int(x) for x in line]
positive_examples.append(parse_line)
with open(negative_file)as fin:
for line in fin:
line = line.strip()
line = line.split()
parse_line = [int(x) for x in line]
if len(parse_line) == 20:
negative_examples.append(parse_line)
#self.sentences前面为正样本,后面为负样本,如果正样本是960x20,负样本也是960x20,则该数为1920x20
self.sentences = np.array(positive_examples + negative_examples)
# Generate labels,正样本标签为[0,1],负样本标签为[1,0],标签为2维的
positive_labels = [[0, 1] for _ in positive_examples]
negative_labels = [[1, 0] for _ in negative_examples]
self.labels = np.concatenate([positive_labels, negative_labels], 0)
# Shuffle the data
shuffle_indices = np.random.permutation(np.arange(len(self.labels)))
self.sentences = self.sentences[shuffle_indices]
self.labels = self.labels[shuffle_indices]
# Split batches
self.num_batch = int(len(self.labels) / self.batch_size)
self.sentences = self.sentences[:self.num_batch * self.batch_size]
self.labels = self.labels[:self.num_batch * self.batch_size]
self.sentences_batches = np.split(self.sentences, self.num_batch, 0)
self.labels_batches = np.split(self.labels, self.num_batch, 0)
self.pointer = 0
def next_batch(self):
ret = self.sentences_batches[self.pointer], self.labels_batches[self.pointer]
self.pointer = (self.pointer + 1) % self.num_batch
return ret
def reset_pointer(self):
self.pointer = 0
#generator.py
#采用GRU作为生成器
import tensorflow as tf
from tensorflow.python.ops import tensor_array_ops, control_flow_ops
import pdb
class Generator(object):
#num_emb表示词汇表的数目,emb_dim词汇表中数的维度
def __init__(self, num_emb, batch_size, emb_dim, hidden_dim,
sequence_length, start_token,
learning_rate=0.01, reward_gamma=0.95):
self.num_emb = num_emb #5000
self.batch_size = batch_size #64
self.emb_dim = emb_dim #32
self.hidden_dim = hidden_dim #32
self.sequence_length = sequence_length#20
self.start_token = tf.constant([start_token] * self.batch_size, dtype=tf.int32)
self.learning_rate = tf.Variable(float(learning_rate), trainable=False)
self.reward_gamma = reward_gamma
self.g_params = []
self.d_params = []
self.temperature = 1.0
self.grad_clip = 5.0
self.expected_reward = tf.Variable(tf.zeros([self.sequence_length]))
with tf.variable_scope('generator'):
#pdb.set_trace()
self.g_embeddings = tf.Variable(self.init_matrix([self.num_emb, self.emb_dim]))#5000x32
self.g_params.append(self.g_embeddings) #将输入层到隐藏层,隐藏层到输出层的参数都放在g_params
self.g_recurrent_unit = self.create_recurrent_unit(self.g_params) # maps h_tm1 to h_t for generator
self.g_output_unit = self.create_output_unit(self.g_params) # maps h_t to o_t (output token logits)
# placeholder definition
self.x = tf.placeholder(tf.int32, shape=[self.batch_size, self.sequence_length]) # sequence of tokens generated by generator
self.rewards = tf.placeholder(tf.float32, shape=[self.batch_size, self.sequence_length]) # get from rollout policy and discriminator
# processed for batch
with tf.device("/cpu:0"):
self.processed_x = tf.transpose(tf.nn.embedding_lookup(self.g_embeddings, self.x), perm=[1, 0, 2]) # seq_length x batch_size x emb_dim
# Initial states 包含了LSTM的hidden_state和Ct
self.h0 = tf.zeros([self.batch_size, self.hidden_dim])
self.h0 = tf.stack([self.h0, self.h0])#2x64x32
#采用GRU生成64个下一个单词的概率和具体值
#pdb.set_trace()
gen_o = tensor_array_ops.TensorArray(dtype=tf.float32, size=self.sequence_length,
dynamic_size=False, infer_shape=True)
gen_x = tensor_array_ops.TensorArray(dtype=tf.int32, size=self.sequence_length,
dynamic_size=False, infer_shape=True)
def _g_recurrence(i, x_t, h_tm1, gen_o, gen_x):
#pdb.set_trace()
h_t = self.g_recurrent_unit(x_t, h_tm1) # hidden_memory_tuple
o_t = self.g_output_unit(h_t) # batch x vocab , logits not prob
log_prob = tf.log(tf.nn.softmax(o_t))
next_token = tf.cast(tf.reshape(tf.multinomial(log_prob, 1), [self.batch_size]), tf.int32)
x_tp1 = tf.nn.embedding_lookup(self.g_embeddings, next_token) # batch x emb_dim
gen_o = gen_o.write(i, tf.reduce_sum(tf.multiply(tf.one_hot(next_token, self.num_emb, 1.0, 0.0),
tf.nn.softmax(o_t)), 1)) # [batch_size] , prob
gen_x = gen_x.write(i, next_token) # indices, batch_size
return i + 1, x_tp1, h_t, gen_o, gen_x
#如果目前的状态长度还没有达到最后的序列长度,采用GRU预测下一个值,因此gen_o和gen_x都是64维,直到产生要求长度的序列为止
_, _, _, self.gen_o, self.gen_x = control_flow_ops.while_loop(
cond=lambda i, _1, _2, _3, _4: i < self.sequence_length,
body=_g_recurrence,
loop_vars=(tf.constant(0, dtype=tf.int32),
tf.nn.embedding_lookup(self.g_embeddings, self.start_token), self.h0, gen_o, gen_x))
self.gen_x = self.gen_x.stack() # seq_length x batch_size
self.gen_x = tf.transpose(self.gen_x, perm=[1, 0]) # batch_size x seq_length
# supervised pretraining for generator
g_predictions = tensor_array_ops.TensorArray(
dtype=tf.float32, size=self.sequence_length,
dynamic_size=False, infer_shape=True)
ta_emb_x = tensor_array_ops.TensorArray(
dtype=tf.float32, size=self.sequence_length)
ta_emb_x = ta_emb_x.unstack(self.processed_x)
def _pretrain_recurrence(i, x_t, h_tm1, g_predictions):
h_t = self.g_recurrent_unit(x_t, h_tm1)
o_t = self.g_output_unit(h_t)
g_predictions = g_predictions.write(i, tf.nn.softmax(o_t)) # batch x vocab_size
x_tp1 = ta_emb_x.read(i)
return i + 1, x_tp1, h_t, g_predictions
_, _, _, self.g_predictions = control_flow_ops.while_loop(
cond=lambda i, _1, _2, _3: i < self.sequence_length,
body=_pretrain_recurrence,
loop_vars=(tf.constant(0, dtype=tf.int32),
tf.nn.embedding_lookup(self.g_embeddings, self.start_token),
self.h0, g_predictions))
self.g_predictions = tf.transpose(self.g_predictions.stack(), perm=[1, 0, 2]) # batch_size x seq_length x vocab_size
# pretraining loss
self.pretrain_loss = -tf.reduce_sum(
tf.one_hot(tf.to_int32(tf.reshape(self.x, [-1])), self.num_emb, 1.0, 0.0) * tf.log(
tf.clip_by_value(tf.reshape(self.g_predictions, [-1, self.num_emb]), 1e-20, 1.0)
)
) / (self.sequence_length * self.batch_size)
# training updates
pretrain_opt = self.g_optimizer(self.learning_rate)
self.pretrain_grad, _ = tf.clip_by_global_norm(tf.gradients(self.pretrain_loss, self.g_params), self.grad_clip)
self.pretrain_updates = pretrain_opt.apply_gradients(zip(self.pretrain_grad, self.g_params))
#######################################################################################################
# Unsupervised Training
#将预测值的log与reward相乘,然后再乘以生成的数据,即采样的数据出现,对y属于词汇表中人一个词求和,再对20个数据全部生成求和,得到最后的loss
#######################################################################################################
self.g_loss = -tf.reduce_sum(
tf.reduce_sum(
tf.one_hot(tf.to_int32(tf.reshape(self.x, [-1])), self.num_emb, 1.0, 0.0) * tf.log(
tf.clip_by_value(tf.reshape(self.g_predictions, [-1, self.num_emb]), 1e-20, 1.0)
), 1) * tf.reshape(self.rewards, [-1])
)
g_opt = self.g_optimizer(self.learning_rate)
self.g_grad, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss, self.g_params), self.grad_clip)
self.g_updates = g_opt.apply_gradients(zip(self.g_grad, self.g_params))
def generate(self, sess):
outputs = sess.run(self.gen_x)
return outputs
def pretrain_step(self, sess, x):
outputs = sess.run([self.pretrain_updates, self.pretrain_loss], feed_dict={self.x: x})
return outputs
def init_matrix(self, shape):
return tf.random_normal(shape, stddev=0.1)
def init_vector(self, shape):
return tf.zeros(shape)
#-----------------------------一个完整的LSTM--------------------------------------#
def create_recurrent_unit(self, params):
# Weights and Bias for input and hidden tensor
self.Wi = tf.Variable(self.init_matrix([self.emb_dim, self.hidden_dim])) #32x32
self.Ui = tf.Variable(self.init_matrix([self.hidden_dim, self.hidden_dim]))
self.bi = tf.Variable(self.init_matrix([self.hidden_dim]))
self.Wf = tf.Variable(self.init_matrix([self.emb_dim, self.hidden_dim]))
self.Uf = tf.Variable(self.init_matrix([self.hidden_dim, self.hidden_dim]))
self.bf = tf.Variable(self.init_matrix([self.hidden_dim]))
self.Wog = tf.Variable(self.init_matrix([self.emb_dim, self.hidden_dim]))
self.Uog = tf.Variable(self.init_matrix([self.hidden_dim, self.hidden_dim]))
self.bog = tf.Variable(self.init_matrix([self.hidden_dim]))
self.Wc = tf.Variable(self.init_matrix([self.emb_dim, self.hidden_dim]))
self.Uc = tf.Variable(self.init_matrix([self.hidden_dim, self.hidden_dim]))
self.bc = tf.Variable(self.init_matrix([self.hidden_dim]))
params.extend([
self.Wi, self.Ui, self.bi,
self.Wf, self.Uf, self.bf,
self.Wog, self.Uog, self.bog,
self.Wc, self.Uc, self.bc])
#----------------------创建LSTM中的cell-----------------------------#
def unit(x, hidden_memory_tm1):
#pdb.set_trace()
previous_hidden_state, c_prev = tf.unstack(hidden_memory_tm1)#按行拆分矩阵
# Input Gate
i = tf.sigmoid(
tf.matmul(x, self.Wi) +
tf.matmul(previous_hidden_state, self.Ui) + self.bi
)
# Forget Gate
f = tf.sigmoid(
tf.matmul(x, self.Wf) +
tf.matmul(previous_hidden_state, self.Uf) + self.bf
)
# Output Gate
o = tf.sigmoid(
tf.matmul(x, self.Wog) +
tf.matmul(previous_hidden_state, self.Uog) + self.bog
)
# New Memory Cell
c_ = tf.nn.tanh(
tf.matmul(x, self.Wc) +
tf.matmul(previous_hidden_state, self.Uc) + self.bc
)
# Final Memory cell
c = f * c_prev + i * c_
# Current Hidden state
current_hidden_state = o * tf.nn.tanh(c)
return tf.stack([current_hidden_state, c])
return unit
def create_output_unit(self, params):
self.Wo = tf.Variable(self.init_matrix([self.hidden_dim, self.num_emb]))
self.bo = tf.Variable(self.init_matrix([self.num_emb]))
params.extend([self.Wo, self.bo])
def unit(hidden_memory_tuple):
hidden_state, c_prev = tf.unstack(hidden_memory_tuple)
# hidden_state : batch x hidden_dim
logits = tf.matmul(hidden_state, self.Wo) + self.bo
# output = tf.nn.softmax(logits)
return logits
return unit
def g_optimizer(self, *args, **kwargs):
return tf.train.AdamOptimizer(*args, **kwargs)
#discriminator.py
import tensorflow as tf
import numpy as np
import pdb
# An alternative to tf.nn.rnn_cell._linear function, which has been removed in Tensorfow 1.0.1
# The highway layer is borrowed from https://github.com/mkroutikov/tf-lstm-char-cnn
def linear(input_, output_size, scope=None):
'''
Linear map: output[k] = sum_i(Matrix[k, i] * input_[i] ) + Bias[k]
Args:
input_: a tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(input_[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
'''
shape = input_.get_shape().as_list()
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: %s" % str(shape))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: %s" % str(shape))
input_size = shape[1]
# Now the computation.
with tf.variable_scope(scope or "SimpleLinear"):
matrix = tf.get_variable("Matrix", [output_size, input_size], dtype=input_.dtype)
bias_term = tf.get_variable("Bias", [output_size], dtype=input_.dtype)
return tf.matmul(input_, tf.transpose(matrix)) + bias_term
def highway(input_, size, num_layers=1, bias=-2.0, f=tf.nn.relu, scope='Highway'):
"""Highway Network (cf. http://arxiv.org/abs/1505.00387).
t = sigmoid(Wy + b)
z = t * g(Wy + b) + (1 - t) * y
where g is nonlinearity, t is transform gate, and (1 - t) is carry gate.
"""
with tf.variable_scope(scope):
for idx in range(num_layers):
g = f(linear(input_, size, scope='highway_lin_%d' % idx))
t = tf.sigmoid(linear(input_, size, scope='highway_gate_%d' % idx) + bias)
output = t * g + (1. - t) * input_
input_ = output
return output
class Discriminator(object):
"""
A CNN for text classification.
Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
"""
def __init__(
self, sequence_length, num_classes, vocab_size,
embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
with tf.variable_scope('discriminator'):
# Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for filter_size, num_filter in zip(filter_sizes, num_filters):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filter]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filter]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
#pdb.set_trace()
# Combine all the pooled features
num_filters_total = sum(num_filters)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# Add highway
with tf.name_scope("highway"):
self.h_highway = highway(self.h_pool_flat, self.h_pool_flat.get_shape()[1], 1, 0)
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_highway, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.Variable(tf.truncated_normal([num_filters_total, num_classes], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.ypred_for_auc = tf.nn.softmax(self.scores)
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# CalculateMean cross-entropy loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
tf.summary.scalar('loss', self.loss)
self.params = [param for param in tf.trainable_variables() if 'discriminator' in param.name]
d_optimizer = tf.train.AdamOptimizer(1e-4)
grads_and_vars = d_optimizer.compute_gradients(self.loss, self.params, aggregation_method=2)
self.train_op = d_optimizer.apply_gradients(grads_and_vars)
#rollout.py
import tensorflow as tf
from tensorflow.python.ops import tensor_array_ops, control_flow_ops
import numpy as np
class ROLLOUT(object):
def __init__(self, lstm, update_rate):
self.lstm = lstm
self.update_rate = update_rate
self.num_emb = self.lstm.num_emb
self.batch_size = self.lstm.batch_size
self.emb_dim = self.lstm.emb_dim
self.hidden_dim = self.lstm.hidden_dim
self.sequence_length = self.lstm.sequence_length
self.start_token = tf.identity(self.lstm.start_token)
self.learning_rate = self.lstm.learning_rate
self.g_embeddings = tf.identity(self.lstm.g_embeddings)
self.g_recurrent_unit = self.create_recurrent_unit() # maps h_tm1 to h_t for generator
self.g_output_unit = self.create_output_unit() # maps h_t to o_t (output token logits)
#####################################################################################################
# placeholder definition
self.x = tf.placeholder(tf.int32, shape=[self.batch_size, self.sequence_length]) # sequence of tokens generated by generator
self.given_num = tf.placeholder(tf.int32)
# processed for batch
with tf.device("/cpu:0"):
self.processed_x = tf.transpose(tf.nn.embedding_lookup(self.g_embeddings, self.x), perm=[1, 0, 2]) # seq_length x batch_size x emb_dim
ta_emb_x = tensor_array_ops.TensorArray(
dtype=tf.float32, size=self.sequence_length)
ta_emb_x = ta_emb_x.unstack(self.processed_x)
ta_x = tensor_array_ops.TensorArray(dtype=tf.int32, size=self.sequence_length)
ta_x = ta_x.unstack(tf.transpose(self.x, perm=[1, 0]))
#####################################################################################################
self.h0 = tf.zeros([self.batch_size, self.hidden_dim])
self.h0 = tf.stack([self.h0, self.h0])
gen_x = tensor_array_ops.TensorArray(dtype=tf.int32, size=self.sequence_length,
dynamic_size=False, infer_shape=True)
# When current index i < given_num, use the provided tokens as the input at each time step
def _g_recurrence_1(i, x_t, h_tm1, given_num, gen_x):
h_t = self.g_recurrent_unit(x_t, h_tm1) # hidden_memory_tuple
x_tp1 = ta_emb_x.read(i)
gen_x = gen_x.write(i, ta_x.read(i))
return i + 1, x_tp1, h_t, given_num, gen_x
# When current index i >= given_num, start roll-out, use the output as time step t as the input at time step t+1
def _g_recurrence_2(i, x_t, h_tm1, given_num, gen_x):
h_t = self.g_recurrent_unit(x_t, h_tm1) # hidden_memory_tuple
o_t = self.g_output_unit(h_t) # batch x vocab , logits not prob
log_prob = tf.log(tf.nn.softmax(o_t))
next_token = tf.cast(tf.reshape(tf.multinomial(log_prob, 1), [self.batch_size]), tf.int32)
x_tp1 = tf.nn.embedding_lookup(self.g_embeddings, next_token) # batch x emb_dim
gen_x = gen_x.write(i, next_token) # indices, batch_size
return i + 1, x_tp1, h_t, given_num, gen_x
i, x_t, h_tm1, given_num, self.gen_x = control_flow_ops.while_loop(
cond=lambda i, _1, _2, given_num, _4: i < given_num,
body=_g_recurrence_1,
loop_vars=(tf.constant(0, dtype=tf.int32),
tf.nn.embedding_lookup(self.g_embeddings, self.start_token), self.h0, self.given_num, gen_x))
_, _, _, _, self.gen_x = control_flow_ops.while_loop(
cond=lambda i, _1, _2, _3, _4: i < self.sequence_length,
body=_g_recurrence_2,
loop_vars=(i, x_t, h_tm1, given_num, self.gen_x))
self.gen_x = self.gen_x.stack() # seq_length x batch_size
self.gen_x = tf.transpose(self.gen_x, perm=[1, 0]) # batch_size x seq_length
def get_reward(self, sess, input_x, rollout_num, discriminator):
# input_x表示需要打分的序列
#rollout_num:采样的次数,即将多少个reward取平均
rewards = []
for i in range(rollout_num):
# given_num between 1 to sequence_length - 1 for a part completed sentence
for given_num in range(1, self.sequence_length ):
#生成一个样本,前given_num由input_x提供,given_num后的token由生成器补
feed = {self.x: input_x, self.given_num: given_num}
samples = sess.run(self.gen_x, feed)
feed = {discriminator.input_x: samples, discriminator.dropout_keep_prob: 1.0}
ypred_for_auc = sess.run(discriminator.ypred_for_auc, feed)#判别器给每个句子打分,作为reward
ypred = np.array([item[1] for item in ypred_for_auc])
if i == 0:
rewards.append(ypred)
else:
rewards[given_num - 1] += ypred
# the last token reward 如果given_num已经是最后一个token,最喂给判别器的样本就全是input_x
feed = {discriminator.input_x: input_x, discriminator.dropout_keep_prob: 1.0}
#ypred_for_auc是二分类的,第一个数为该样本为假样本的概率,第二个数为真样本的概率
ypred_for_auc = sess.run(discriminator.ypred_for_auc, feed)
ypred = np.array([item[1] for item in ypred_for_auc])
if i == 0:
rewards.append(ypred)
else:
# completed sentence reward
rewards[self.sequence_length - 1] += ypred
rewards = np.transpose(np.array(rewards)) / (1.0 * rollout_num) # batch_size x seq_length
return rewards
def create_recurrent_unit(self):
# Weights and Bias for input and hidden tensor
self.Wi = tf.identity(self.lstm.Wi)
self.Ui = tf.identity(self.lstm.Ui)
self.bi = tf.identity(self.lstm.bi)
self.Wf = tf.identity(self.lstm.Wf)
self.Uf = tf.identity(self.lstm.Uf)
self.bf = tf.identity(self.lstm.bf)
self.Wog = tf.identity(self.lstm.Wog)
self.Uog = tf.identity(self.lstm.Uog)
self.bog = tf.identity(self.lstm.bog)
self.Wc = tf.identity(self.lstm.Wc)
self.Uc = tf.identity(self.lstm.Uc)
self.bc = tf.identity(self.lstm.bc)
def unit(x, hidden_memory_tm1):
previous_hidden_state, c_prev = tf.unstack(hidden_memory_tm1)
# Input Gate
i = tf.sigmoid(
tf.matmul(x, self.Wi) +
tf.matmul(previous_hidden_state, self.Ui) + self.bi
)
# Forget Gate
f = tf.sigmoid(
tf.matmul(x, self.Wf) +
tf.matmul(previous_hidden_state, self.Uf) + self.bf
)
# Output Gate
o = tf.sigmoid(
tf.matmul(x, self.Wog) +
tf.matmul(previous_hidden_state, self.Uog) + self.bog
)
# New Memory Cell
c_ = tf.nn.tanh(
tf.matmul(x, self.Wc) +
tf.matmul(previous_hidden_state, self.Uc) + self.bc
)
# Final Memory cell
c = f * c_prev + i * c_
# Current Hidden state
current_hidden_state = o * tf.nn.tanh(c)
return tf.stack([current_hidden_state, c])
return unit
def update_recurrent_unit(self):
# Weights and Bias for input and hidden tensor
self.Wi = self.update_rate * self.Wi + (1 - self.update_rate) * tf.identity(self.lstm.Wi)
self.Ui = self.update_rate * self.Ui + (1 - self.update_rate) * tf.identity(self.lstm.Ui)
self.bi = self.update_rate * self.bi + (1 - self.update_rate) * tf.identity(self.lstm.bi)
self.Wf = self.update_rate * self.Wf + (1 - self.update_rate) * tf.identity(self.lstm.Wf)
self.Uf = self.update_rate * self.Uf + (1 - self.update_rate) * tf.identity(self.lstm.Uf)
self.bf = self.update_rate * self.bf + (1 - self.update_rate) * tf.identity(self.lstm.bf)
self.Wog = self.update_rate * self.Wog + (1 - self.update_rate) * tf.identity(self.lstm.Wog)
self.Uog = self.update_rate * self.Uog + (1 - self.update_rate) * tf.identity(self.lstm.Uog)
self.bog = self.update_rate * self.bog + (1 - self.update_rate) * tf.identity(self.lstm.bog)
self.Wc = self.update_rate * self.Wc + (1 - self.update_rate) * tf.identity(self.lstm.Wc)
self.Uc = self.update_rate * self.Uc + (1 - self.update_rate) * tf.identity(self.lstm.Uc)
self.bc = self.update_rate * self.bc + (1 - self.update_rate) * tf.identity(self.lstm.bc)
def unit(x, hidden_memory_tm1):
previous_hidden_state, c_prev = tf.unstack(hidden_memory_tm1)
# Input Gate
i = tf.sigmoid(
tf.matmul(x, self.Wi) +
tf.matmul(previous_hidden_state, self.Ui) + self.bi
)
# Forget Gate
f = tf.sigmoid(
tf.matmul(x, self.Wf) +
tf.matmul(previous_hidden_state, self.Uf) + self.bf
)
# Output Gate
o = tf.sigmoid(
tf.matmul(x, self.Wog) +
tf.matmul(previous_hidden_state, self.Uog) + self.bog
)
# New Memory Cell
c_ = tf.nn.tanh(
tf.matmul(x, self.Wc) +
tf.matmul(previous_hidden_state, self.Uc) + self.bc
)
# Final Memory cell
c = f * c_prev + i * c_
# Current Hidden state
current_hidden_state = o * tf.nn.tanh(c)
return tf.stack([current_hidden_state, c])
return unit
def create_output_unit(self):
self.Wo = tf.identity(self.lstm.Wo)
self.bo = tf.identity(self.lstm.bo)
def unit(hidden_memory_tuple):
hidden_state, c_prev = tf.unstack(hidden_memory_tuple)
# hidden_state : batch x hidden_dim
logits = tf.matmul(hidden_state, self.Wo) + self.bo
# output = tf.nn.softmax(logits)
return logits
return unit
def update_output_unit(self):
self.Wo = self.update_rate * self.Wo + (1 - self.update_rate) * tf.identity(self.lstm.Wo)
self.bo = self.update_rate * self.bo + (1 - self.update_rate) * tf.identity(self.lstm.bo)
def unit(hidden_memory_tuple):
hidden_state, c_prev = tf.unstack(hidden_memory_tuple)
# hidden_state : batch x hidden_dim
logits = tf.matmul(hidden_state, self.Wo) + self.bo
# output = tf.nn.softmax(logits)
return logits
return unit
def update_params(self):
self.g_embeddings = tf.identity(self.lstm.g_embeddings)
self.g_recurrent_unit = self.update_recurrent_unit()
self.g_output_unit = self.update_output_unit()