顾名思义,就是支持重进入的锁,它表示该锁能够支持一个线程对资源的重复加锁。synchronized是我们熟知的一个重入锁;synchronized关键字隐式的支持重进入,比如一个synchronized修饰的递归方法,在方法执行时,执行线程在获取了锁之后仍能连续多次地获得该锁。
在这里,我们引用究竟什么是可重入锁?文章中的例子,来演示一下:
public class ReentrantTest implements Runnable {
public synchronized void get() {
System.out.println(Thread.currentThread().getName());
set();
}
public synchronized void set() {
System.out.println(Thread.currentThread().getName());
}
@Override
public void run() {
get();
}
public static void main(String[] args) {
ReentrantTest rt = new ReentrantTest();
for(;;){
new Thread(rt).start();
}
}
}
在这段代码中,我们首先在run()方法中调用get(),又在get()方法中调用set(),达到了一个嵌套调用.运行代码之后,我们发现这段代码并没有发生死锁的现象,所以我们得到一个结论:synchronized是重入锁;关于其他例子,大家可以参考上面的博客。
首先我们来看官方文档
ReentrantLock是具有与使用synchronized方法和语句访问的隐式监视锁相同的基本行为和语义的可重入互斥的锁,但具有扩展功能。
ReentrantLock虽然没能像synchronized关键字一样支持隐式的重进入,但是在调用lock()方法时,已经获取到锁的线程,能够再次调用lock()方法获取锁而不被阻塞。这里还有一个锁获取的公平性问题,如果在绝对时间上,先对锁进行获取的请求一定先被满足,那么这个锁是公平的,反之,是不公平的。公平的获取锁,也就是等待时间最长的线程最优先获取锁,也可以说锁获取是顺序的。ReentrantLock提供了一个构造函数,能够控制锁是否是公平的。事实上,公平的锁机制往往没有非公平的效率高,但是,并不是任何场景都是以TPS作为唯一的指标,公平锁能够减少“饥饿”发生的概率,等待越久的请求越是能够得到优先满足。
下面将着重分析ReentrantLock是如何实现重进入和公平性获取锁的特性,并通过测试来验证公平性获取锁对性能的影响。
重进入是指任意线程在获取到锁之后能够再次获取该锁而不会被锁所阻塞,该特性的实现需要解决以下两个问题。
ReentrantLock是通过组合自定义同步器来实现锁的获取与释放,以非公平性(默认的)实现为例,获取同步状态的代码如代码清单3-1所示。
代码清单3-1 ReentrantLock的nonfairTryAcquire方法
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
我们可以看到,该方法增加了再次获取同步状态的处理逻辑:通过判断当前线程是否为获取锁的线程来决定获取操作是否成功,如果是获取锁的线程再次请求,则将同步状态值进行增加并返回true,表示获取同步状态成功。成功获取锁的线程再次获取锁,只是增加了同步状态值,这也就要求ReentrantLock在释放同步状态时减少同步状态值,该方法的代码如代码清单3-2所示。
代码清单3-2 ReentrantLock的tryRelease方法
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
如果该锁被获取了n次,那么前(n-1)次tryRelease(int releases)方法必须返回false,而只有同步状态完全释放了,才能返回true。可以看到,该方法将同步状态是否为0作为最终释放的条件,当同步状态为0时,将占有线程设置为null,并返回true,表示释放成功。
公平性与否是针对获取锁而言的,如果一个锁是公平的,那么锁的获取顺序就应该符合请求的绝对时间顺序,也就是FIFO。
回顾上一小节中介绍的nonfairTryAcquire(int acquires)方法,对于非公平锁,只要CAS设置同步状态成功,则表示当前线程获取了锁,而公平锁则不同,如代码清单3-3所示。
代码清单3-3 ReentrantLock的tryAcquire方法
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
该方法与nonfairTryAcquire(int acquires)比较,唯一不同的位置为判断条件多了hasQueuedPredecessors()方法,即加入了同步队列中当前节点是否有前驱节点的判断,如果该方法返回true,则表示有线程比当前线程更早地请求获取锁,因此需要等待前驱线程获取并释放锁之后才能继续获取锁。
返回专栏目录 |
---|